@@ -9,15 +9,14 @@ library(explor)
99
1010data(hdv2003 )
1111
12- d <- hdv2003 %> %
12+ d <- hdv2003 %> %
1313 select(sexe , qualif , relig , cuisine , bricol , cinema , sport , age , freres.soeurs )
1414acm <- MCA(d , quali.sup = 6 : 7 , ind.sup = 1 : 50 , quanti.sup = 8 : 9 , graph = FALSE )
1515explor(acm )
1616
17- d <- hdv2003 %> %
17+ d <- hdv2003 %> %
1818 select(sexe , nivetud , qualif , clso , relig , cuisine , bricol )
1919acm <- MCA(d , graph = FALSE )
20- detach(package : explor , unload = TRUE ); library(explor )
2120explor(acm )
2221
2322# # MCA 2
@@ -26,9 +25,8 @@ library(FactoMineR)
2625library(explor )
2726
2827data(hobbies )
29- mca <- MCA(hobbies [1 : 1000 ,c(1 : 8 ,21 : 23 )],quali.sup = 9 : 10 , quanti.sup = 11 , ind.sup = 1 : 100 , graph = FALSE )
30- # mca <- MCA(hobbies[1:1000,c(1:8,21:22)],quali.sup = 9:10, ind.sup = 1:100, graph = FALSE)
31- detach(package : explor , unload = TRUE ); library(explor )
28+ mca <- MCA(hobbies [1 : 1000 , c(1 : 8 , 21 : 23 )], quali.sup = 9 : 10 , quanti.sup = 11 , ind.sup = 1 : 100 , graph = FALSE )
29+ # mca <- MCA(hobbies[1:1000,c(1:8,21:22)],quali.sup = 9:10, ind.sup = 1:100, graph = FALSE)
3230explor(mca )
3331
3432# # PCA
@@ -37,9 +35,8 @@ library(FactoMineR)
3735library(explor )
3836
3937data(decathlon )
40- d <- decathlon [,1 : 12 ]
41- pca <- PCA(d , quanti.sup = 11 : 12 , ind.sup = 1 : 4 , graph = FALSE , scale.unit = TRUE )
42- detach(package : explor , unload = TRUE ); library(explor )
38+ d <- decathlon [, 1 : 12 ]
39+ pca <- PCA(d , quanti.sup = 11 : 12 , ind.sup = 1 : 4 , graph = FALSE , scale.unit = TRUE )
4340explor(pca )
4441
4542
@@ -51,8 +48,7 @@ library(explor)
5148data(decathlon )
5249d <- decathlon
5350d $ sexe <- sample(c(" Homme" , " Femme" ), 41 , replace = TRUE )
54- pca <- PCA(d , quanti.sup = 11 : 12 , quali.sup = 13 : 14 , ind.sup = 1 : 4 , graph = FALSE , scale.unit = TRUE )
55- detach(package : explor , unload = TRUE ); library(explor )
51+ pca <- PCA(d , quanti.sup = 11 : 12 , quali.sup = 13 : 14 , ind.sup = 1 : 4 , graph = FALSE , scale.unit = TRUE )
5652explor(pca )
5753
5854
@@ -64,20 +60,17 @@ library(questionr)
6460
6561data(children )
6662res.ca <- CA(children [1 : 14 , 1 : 5 ], graph = FALSE )
67- detach(package : explor , unload = TRUE ); library(explor )
6863explor(res.ca )
6964
70-
65+
7166data(children )
7267res.ca <- CA(children , row.sup = 15 : 18 , col.sup = 6 : 8 , graph = FALSE )
73- detach(package : explor , unload = TRUE ); library(explor )
7468explor(res.ca )
7569
7670data(children )
7771tmp <- children
78- tmp [,9 ] <- factor (sample(c(" red" ," blue" ," green" ), 18 , replace = TRUE ))
72+ tmp [, 9 ] <- factor (sample(c(" red" , " blue" , " green" ), 18 , replace = TRUE ))
7973res.ca <- CA(tmp , row.sup = 15 : 18 , col.sup = 6 : 8 , quali.sup = 9 , graph = FALSE )
80- detach(package : explor , unload = TRUE ); library(explor )
8174explor(res.ca )
8275
8376
@@ -95,29 +88,26 @@ sup_ind <- d[1:10, -(8:9)]
9588pca <- dudi.pca(d [- (1 : 10 ), - (8 : 9 )], scale = TRUE , scannf = FALSE , nf = 5 )
9689pca $ supi <- suprow(pca , sup_ind )
9790pca $ supv <- supcol(pca , dudi.pca(sup_var , scale = TRUE , scannf = FALSE )$ tab )
98- detach(package : explor , unload = TRUE ); library(explor )
9991explor(pca )
10092
10193library(ade4 )
10294data(deug )
10395pca <- dudi.pca(deug $ tab , scale = TRUE , scannf = FALSE , nf = 5 )
104- detach(package : explor , unload = TRUE ); library(explor )
10596explor(pca )
10697
10798# # MCA
10899
109100library(explor )
110101library(ade4 )
111102data(banque )
112- d <- banque [- (1 : 100 ),- (19 : 21 )]
103+ d <- banque [- (1 : 100 ), - (19 : 21 )]
113104ind_sup <- banque [1 : 100 , - (19 : 21 )]
114- var_sup <- banque [- (1 : 100 ),19 : 21 ]
105+ var_sup <- banque [- (1 : 100 ), 19 : 21 ]
115106acm <- dudi.acm(d , scannf = FALSE , nf = 5 )
116107# # Supplementary variables
117108acm $ supv <- supcol(acm , dudi.acm(var_sup , scannf = FALSE , nf = 5 )$ tab )
118109# # Supplementary individuals
119110acm $ supi <- suprow(acm , ind_sup )
120- detach(package : explor , unload = TRUE ); library(explor )
121111explor(acm )
122112
123113# # CA
@@ -127,17 +117,15 @@ library(explor)
127117
128118data(bordeaux )
129119tab <- bordeaux
130- row_sup <- tab [5 ,- 4 ]
131- col_sup <- tab [- 5 ,4 ]
132- coa <- dudi.coa(tab [- 5 ,- 4 ], nf = 5 , scannf = FALSE )
120+ row_sup <- tab [5 , - 4 ]
121+ col_sup <- tab [- 5 , 4 ]
122+ coa <- dudi.coa(tab [- 5 , - 4 ], nf = 5 , scannf = FALSE )
133123coa $ supr <- suprow(coa , row_sup )
134124coa $ supc <- supcol(coa , col_sup )
135- detach(package : explor , unload = TRUE ); library(explor )
136125explor(coa )
137126
138127data(bordeaux )
139128coa <- dudi.coa(bordeaux , nf = 5 , scannf = FALSE )
140- detach(package : explor , unload = TRUE ); library(explor )
141129explor(coa )
142130
143131
@@ -148,18 +136,18 @@ explor(coa)
148136library(explor )
149137library(GDAtools )
150138data(Music )
151- mca <- speMCA(Music [,1 : 5 ],excl = c(3 ,6 , 9 , 12 ,15 ))
139+ mca <- speMCA(Music [, 1 : 5 ], excl = c(3 , 6 , 9 , 12 , 15 ))
152140explor(mca )
153141
154142
155143# # speMCA with indsup and varsup
156144library(explor )
157145library(GDAtools )
158146data(Music )
159- getindexcat(Music [,1 : 4 ])
147+ getindexcat(Music [, 1 : 4 ])
160148mca <- speMCA(Music [3 : nrow(Music ), 1 : 4 ], excl = c(3 , 6 , 9 , 12 ))
161149mca $ supi <- indsup(mca , Music [1 : 2 , 1 : 4 ])
162- mca $ supv <- speMCA_varsup(mca , Music [3 : nrow(Music ), 5 : 6 ])
150+ mca $ supv <- speMCA_varsup(mca , Music [3 : nrow(Music ), 5 , drop = FALSE ])
163151explor(mca )
164152
165153
@@ -172,11 +160,10 @@ library(explor)
172160tmp <- farms [4 : 20 , 2 : 4 ]
173161mca <- MASS :: mca(tmp , nf = 11 )
174162supi_df <- farms [1 : 3 , 2 : 4 ]
175- supi <- predict(mca , supi_df , type = " row" )
163+ supi <- predict(mca , supi_df , type = " row" )
176164rownames(supi ) <- rownames(supi_df )
177165mca $ supi <- supi
178- mca $ supv <- predict(mca , farms [4 : 20 , 1 , drop = FALSE ], type = " factor" )
179- detach(package : explor , unload = TRUE ); library(explor )
166+ mca $ supv <- predict(mca , farms [4 : 20 , 1 , drop = FALSE ], type = " factor" )
180167explor(mca )
181168
182169
@@ -186,26 +173,22 @@ explor(mca)
186173
187174tmp <- USArrests
188175pca <- princomp(tmp , cor = FALSE )
189- detach(package : explor , unload = TRUE ); library(explor )
190176explor(pca )
191177
192- tmp <- USArrests [6 : 50 ,]
178+ tmp <- USArrests [6 : 50 , ]
193179pca <- princomp(tmp , cor = TRUE )
194- pca $ supi <- predict(pca , USArrests [1 : 5 ,])
195- detach(package : explor , unload = TRUE ); library(explor )
180+ pca $ supi <- predict(pca , USArrests [1 : 5 , ])
196181explor(pca )
197182
198183# prcomp
199184
200185tmp <- USArrests
201186pca <- prcomp(tmp , scale. = FALSE )
202- detach(package : explor , unload = TRUE ); library(explor )
203187explor(pca )
204188
205- tmp <- USArrests [6 : 50 ,]
189+ tmp <- USArrests [6 : 50 , ]
206190pca <- prcomp(tmp , scale. = TRUE )
207- pca $ supi <- predict(pca , USArrests [1 : 5 ,])
208- detach(package : explor , unload = TRUE ); library(explor )
191+ pca $ supi <- predict(pca , USArrests [1 : 5 , ])
209192explor(pca )
210193
211194
@@ -214,4 +197,4 @@ explor(pca)
214197library(quanteda.textmodels )
215198dfmat <- quanteda :: dfm(data_corpus_irishbudget2010 )
216199tmod <- textmodel_ca(dfmat , nd = 7 )
217- explor(tmod )
200+ explor(tmod )
0 commit comments