Skip to content

Commit bed1209

Browse files
committed
Formatting
1 parent 21ba2e8 commit bed1209

File tree

1 file changed

+24
-41
lines changed

1 file changed

+24
-41
lines changed

example.R

Lines changed: 24 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -9,15 +9,14 @@ library(explor)
99

1010
data(hdv2003)
1111

12-
d <- hdv2003 %>%
12+
d <- hdv2003 %>%
1313
select(sexe, qualif, relig, cuisine, bricol, cinema, sport, age, freres.soeurs)
1414
acm <- MCA(d, quali.sup = 6:7, ind.sup = 1:50, quanti.sup = 8:9, graph = FALSE)
1515
explor(acm)
1616

17-
d <- hdv2003 %>%
17+
d <- hdv2003 %>%
1818
select(sexe, nivetud, qualif, clso, relig, cuisine, bricol)
1919
acm <- MCA(d, graph = FALSE)
20-
detach(package:explor, unload=TRUE); library(explor)
2120
explor(acm)
2221

2322
## MCA 2
@@ -26,9 +25,8 @@ library(FactoMineR)
2625
library(explor)
2726

2827
data(hobbies)
29-
mca <- MCA(hobbies[1:1000,c(1:8,21:23)],quali.sup = 9:10, quanti.sup = 11, ind.sup = 1:100, graph = FALSE)
30-
#mca <- MCA(hobbies[1:1000,c(1:8,21:22)],quali.sup = 9:10, ind.sup = 1:100, graph = FALSE)
31-
detach(package:explor, unload=TRUE); library(explor)
28+
mca <- MCA(hobbies[1:1000, c(1:8, 21:23)], quali.sup = 9:10, quanti.sup = 11, ind.sup = 1:100, graph = FALSE)
29+
# mca <- MCA(hobbies[1:1000,c(1:8,21:22)],quali.sup = 9:10, ind.sup = 1:100, graph = FALSE)
3230
explor(mca)
3331

3432
## PCA
@@ -37,9 +35,8 @@ library(FactoMineR)
3735
library(explor)
3836

3937
data(decathlon)
40-
d <- decathlon[,1:12]
41-
pca <- PCA(d, quanti.sup = 11:12, ind.sup = 1:4, graph = FALSE, scale.unit = TRUE)
42-
detach(package:explor, unload=TRUE); library(explor)
38+
d <- decathlon[, 1:12]
39+
pca <- PCA(d, quanti.sup = 11:12, ind.sup = 1:4, graph = FALSE, scale.unit = TRUE)
4340
explor(pca)
4441

4542

@@ -51,8 +48,7 @@ library(explor)
5148
data(decathlon)
5249
d <- decathlon
5350
d$sexe <- sample(c("Homme", "Femme"), 41, replace = TRUE)
54-
pca <- PCA(d, quanti.sup = 11:12, quali.sup = 13:14, ind.sup = 1:4, graph = FALSE, scale.unit = TRUE)
55-
detach(package:explor, unload=TRUE); library(explor)
51+
pca <- PCA(d, quanti.sup = 11:12, quali.sup = 13:14, ind.sup = 1:4, graph = FALSE, scale.unit = TRUE)
5652
explor(pca)
5753

5854

@@ -64,20 +60,17 @@ library(questionr)
6460

6561
data(children)
6662
res.ca <- CA(children[1:14, 1:5], graph = FALSE)
67-
detach(package:explor, unload=TRUE); library(explor)
6863
explor(res.ca)
6964

70-
65+
7166
data(children)
7267
res.ca <- CA(children, row.sup = 15:18, col.sup = 6:8, graph = FALSE)
73-
detach(package:explor, unload=TRUE); library(explor)
7468
explor(res.ca)
7569

7670
data(children)
7771
tmp <- children
78-
tmp[,9] <- factor(sample(c("red","blue","green"), 18, replace=TRUE))
72+
tmp[, 9] <- factor(sample(c("red", "blue", "green"), 18, replace = TRUE))
7973
res.ca <- CA(tmp, row.sup = 15:18, col.sup = 6:8, quali.sup = 9, graph = FALSE)
80-
detach(package:explor, unload=TRUE); library(explor)
8174
explor(res.ca)
8275

8376

@@ -95,29 +88,26 @@ sup_ind <- d[1:10, -(8:9)]
9588
pca <- dudi.pca(d[-(1:10), -(8:9)], scale = TRUE, scannf = FALSE, nf = 5)
9689
pca$supi <- suprow(pca, sup_ind)
9790
pca$supv <- supcol(pca, dudi.pca(sup_var, scale = TRUE, scannf = FALSE)$tab)
98-
detach(package:explor, unload=TRUE); library(explor)
9991
explor(pca)
10092

10193
library(ade4)
10294
data(deug)
10395
pca <- dudi.pca(deug$tab, scale = TRUE, scannf = FALSE, nf = 5)
104-
detach(package:explor, unload=TRUE); library(explor)
10596
explor(pca)
10697

10798
## MCA
10899

109100
library(explor)
110101
library(ade4)
111102
data(banque)
112-
d <- banque[-(1:100),-(19:21)]
103+
d <- banque[-(1:100), -(19:21)]
113104
ind_sup <- banque[1:100, -(19:21)]
114-
var_sup <- banque[-(1:100),19:21]
105+
var_sup <- banque[-(1:100), 19:21]
115106
acm <- dudi.acm(d, scannf = FALSE, nf = 5)
116107
## Supplementary variables
117108
acm$supv <- supcol(acm, dudi.acm(var_sup, scannf = FALSE, nf = 5)$tab)
118109
## Supplementary individuals
119110
acm$supi <- suprow(acm, ind_sup)
120-
detach(package:explor, unload=TRUE); library(explor)
121111
explor(acm)
122112

123113
## CA
@@ -127,17 +117,15 @@ library(explor)
127117

128118
data(bordeaux)
129119
tab <- bordeaux
130-
row_sup <- tab[5,-4]
131-
col_sup <- tab[-5,4]
132-
coa <- dudi.coa(tab[-5,-4], nf = 5, scannf = FALSE)
120+
row_sup <- tab[5, -4]
121+
col_sup <- tab[-5, 4]
122+
coa <- dudi.coa(tab[-5, -4], nf = 5, scannf = FALSE)
133123
coa$supr <- suprow(coa, row_sup)
134124
coa$supc <- supcol(coa, col_sup)
135-
detach(package:explor, unload=TRUE); library(explor)
136125
explor(coa)
137126

138127
data(bordeaux)
139128
coa <- dudi.coa(bordeaux, nf = 5, scannf = FALSE)
140-
detach(package:explor, unload=TRUE); library(explor)
141129
explor(coa)
142130

143131

@@ -148,18 +136,18 @@ explor(coa)
148136
library(explor)
149137
library(GDAtools)
150138
data(Music)
151-
mca <- speMCA(Music[,1:5],excl=c(3,6,9,12,15))
139+
mca <- speMCA(Music[, 1:5], excl = c(3, 6, 9, 12, 15))
152140
explor(mca)
153141

154142

155143
## speMCA with indsup and varsup
156144
library(explor)
157145
library(GDAtools)
158146
data(Music)
159-
getindexcat(Music[,1:4])
147+
getindexcat(Music[, 1:4])
160148
mca <- speMCA(Music[3:nrow(Music), 1:4], excl = c(3, 6, 9, 12))
161149
mca$supi <- indsup(mca, Music[1:2, 1:4])
162-
mca$supv <- speMCA_varsup(mca, Music[3:nrow(Music), 5:6])
150+
mca$supv <- speMCA_varsup(mca, Music[3:nrow(Music), 5, drop = FALSE])
163151
explor(mca)
164152

165153

@@ -172,11 +160,10 @@ library(explor)
172160
tmp <- farms[4:20, 2:4]
173161
mca <- MASS::mca(tmp, nf = 11)
174162
supi_df <- farms[1:3, 2:4]
175-
supi <- predict(mca, supi_df, type="row")
163+
supi <- predict(mca, supi_df, type = "row")
176164
rownames(supi) <- rownames(supi_df)
177165
mca$supi <- supi
178-
mca$supv <- predict(mca, farms[4:20, 1, drop=FALSE], type="factor")
179-
detach(package:explor, unload=TRUE); library(explor)
166+
mca$supv <- predict(mca, farms[4:20, 1, drop = FALSE], type = "factor")
180167
explor(mca)
181168

182169

@@ -186,26 +173,22 @@ explor(mca)
186173

187174
tmp <- USArrests
188175
pca <- princomp(tmp, cor = FALSE)
189-
detach(package:explor, unload=TRUE); library(explor)
190176
explor(pca)
191177

192-
tmp <- USArrests[6:50,]
178+
tmp <- USArrests[6:50, ]
193179
pca <- princomp(tmp, cor = TRUE)
194-
pca$supi <- predict(pca, USArrests[1:5,])
195-
detach(package:explor, unload=TRUE); library(explor)
180+
pca$supi <- predict(pca, USArrests[1:5, ])
196181
explor(pca)
197182

198183
# prcomp
199184

200185
tmp <- USArrests
201186
pca <- prcomp(tmp, scale. = FALSE)
202-
detach(package:explor, unload=TRUE); library(explor)
203187
explor(pca)
204188

205-
tmp <- USArrests[6:50,]
189+
tmp <- USArrests[6:50, ]
206190
pca <- prcomp(tmp, scale. = TRUE)
207-
pca$supi <- predict(pca, USArrests[1:5,])
208-
detach(package:explor, unload=TRUE); library(explor)
191+
pca$supi <- predict(pca, USArrests[1:5, ])
209192
explor(pca)
210193

211194

@@ -214,4 +197,4 @@ explor(pca)
214197
library(quanteda.textmodels)
215198
dfmat <- quanteda::dfm(data_corpus_irishbudget2010)
216199
tmod <- textmodel_ca(dfmat, nd = 7)
217-
explor(tmod)
200+
explor(tmod)

0 commit comments

Comments
 (0)