|
12 | 12 | "\n", |
13 | 13 | "Recurrent neural networks address this issue. They are networks with loops in them, allowing information to persist.\n", |
14 | 14 | "\n", |
15 | | - "<img src=\"images/rnn_unit.png\" width=500/>" |
| 15 | + "<img src=\"images/rnn_unit.png\" width=\"500\"/>" |
16 | 16 | ] |
17 | 17 | }, |
18 | 18 | { |
|
21 | 21 | "source": [ |
22 | 22 | "A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor. Consider what happens if we unroll the above loop:\n", |
23 | 23 | " \n", |
24 | | - "<img src=\"images/rnn_units.png\" width=500/>" |
| 24 | + "<img src=\"images/rnn_units.png\" width=\"500\"/>" |
25 | 25 | ] |
26 | 26 | }, |
27 | 27 | { |
|
30 | 30 | "source": [ |
31 | 31 | "As demonstrated in the book, recurrent neural networks may be connected in many different ways: sequences in the input, the output, or in the most general case both.\n", |
32 | 32 | "\n", |
33 | | - "<img src=\"images/rnn_connections.png\" width=700/>" |
| 33 | + "<img src=\"images/rnn_connections.png\" width=\"700\"/>" |
34 | 34 | ] |
35 | 35 | }, |
36 | 36 | { |
|
303 | 303 | "\n", |
304 | 304 | "Autoencoders are an unsupervised learning technique in which we leverage neural networks for the task of representation learning. It works by compressing the input into a latent-space representation, to do transformations on the data. \n", |
305 | 305 | "\n", |
306 | | - "<img src=\"images/autoencoder.png\" width=800/>" |
| 306 | + "<img src=\"images/autoencoder.png\" width=\"800\"/>" |
307 | 307 | ] |
308 | 308 | }, |
309 | 309 | { |
|
314 | 314 | "\n", |
315 | 315 | "Autoencoders have different architectures for different kinds of data. Here we only provide a simple example of a vanilla encoder, which means they're only one hidden layer in the network:\n", |
316 | 316 | "\n", |
317 | | - "<img src=\"images/vanilla.png\" width=500/>\n", |
| 317 | + "<img src=\"images/vanilla.png\" width=\"500\"/>\n", |
318 | 318 | "\n", |
319 | 319 | "You can view the source code by:" |
320 | 320 | ] |
|
479 | 479 | "name": "python", |
480 | 480 | "nbconvert_exporter": "python", |
481 | 481 | "pygments_lexer": "ipython3", |
482 | | - "version": "3.6.8" |
| 482 | + "version": "3.6.9" |
483 | 483 | } |
484 | 484 | }, |
485 | 485 | "nbformat": 4, |
|
0 commit comments