@@ -3,6 +3,7 @@ Collections:
33 Metadata :
44 Training Data :
55 - ADE20K
6+ - Cityscapes
67 Paper :
78 URL : https://arxiv.org/abs/2105.15203
89 Title : resize image to multiple of 32, improve SegFormer by 0.5-1.0 mIoU.
@@ -167,3 +168,135 @@ Models:
167168 mIoU(ms+flip) : 50.36
168169 Config : configs/segformer/segformer_mit-b5_640x640_160k_ade20k.py
169170 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth
171+ - Name : segformer_mit-b0_8x1_1024x1024_160k_cityscapes
172+ In Collection : segformer
173+ Metadata :
174+ backbone : MIT-B0
175+ crop size : (1024,1024)
176+ lr schd : 160000
177+ inference time (ms/im) :
178+ - value : 210.97
179+ hardware : V100
180+ backend : PyTorch
181+ batch size : 1
182+ mode : FP32
183+ resolution : (1024,1024)
184+ Training Memory (GB) : 3.64
185+ Results :
186+ - Task : Semantic Segmentation
187+ Dataset : Cityscapes
188+ Metrics :
189+ mIoU : 76.54
190+ mIoU(ms+flip) : 78.22
191+ Config : configs/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes.py
192+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857-e7f88502.pth
193+ - Name : segformer_mit-b1_8x1_1024x1024_160k_cityscapes
194+ In Collection : segformer
195+ Metadata :
196+ backbone : MIT-B1
197+ crop size : (1024,1024)
198+ lr schd : 160000
199+ inference time (ms/im) :
200+ - value : 232.56
201+ hardware : V100
202+ backend : PyTorch
203+ batch size : 1
204+ mode : FP32
205+ resolution : (1024,1024)
206+ Training Memory (GB) : 4.49
207+ Results :
208+ - Task : Semantic Segmentation
209+ Dataset : Cityscapes
210+ Metrics :
211+ mIoU : 78.56
212+ mIoU(ms+flip) : 79.73
213+ Config : configs/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes.py
214+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213-655c7b3f.pth
215+ - Name : segformer_mit-b2_8x1_1024x1024_160k_cityscapes
216+ In Collection : segformer
217+ Metadata :
218+ backbone : MIT-B2
219+ crop size : (1024,1024)
220+ lr schd : 160000
221+ inference time (ms/im) :
222+ - value : 297.62
223+ hardware : V100
224+ backend : PyTorch
225+ batch size : 1
226+ mode : FP32
227+ resolution : (1024,1024)
228+ Training Memory (GB) : 7.42
229+ Results :
230+ - Task : Semantic Segmentation
231+ Dataset : Cityscapes
232+ Metrics :
233+ mIoU : 81.08
234+ mIoU(ms+flip) : 82.18
235+ Config : configs/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes.py
236+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205-6096669a.pth
237+ - Name : segformer_mit-b3_8x1_1024x1024_160k_cityscapes
238+ In Collection : segformer
239+ Metadata :
240+ backbone : MIT-B3
241+ crop size : (1024,1024)
242+ lr schd : 160000
243+ inference time (ms/im) :
244+ - value : 395.26
245+ hardware : V100
246+ backend : PyTorch
247+ batch size : 1
248+ mode : FP32
249+ resolution : (1024,1024)
250+ Training Memory (GB) : 10.86
251+ Results :
252+ - Task : Semantic Segmentation
253+ Dataset : Cityscapes
254+ Metrics :
255+ mIoU : 81.94
256+ mIoU(ms+flip) : 83.14
257+ Config : configs/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes.py
258+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823-a8f8a177.pth
259+ - Name : segformer_mit-b4_8x1_1024x1024_160k_cityscapes
260+ In Collection : segformer
261+ Metadata :
262+ backbone : MIT-B4
263+ crop size : (1024,1024)
264+ lr schd : 160000
265+ inference time (ms/im) :
266+ - value : 531.91
267+ hardware : V100
268+ backend : PyTorch
269+ batch size : 1
270+ mode : FP32
271+ resolution : (1024,1024)
272+ Training Memory (GB) : 15.07
273+ Results :
274+ - Task : Semantic Segmentation
275+ Dataset : Cityscapes
276+ Metrics :
277+ mIoU : 81.89
278+ mIoU(ms+flip) : 83.38
279+ Config : configs/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes.py
280+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709-07f6c333.pth
281+ - Name : segformer_mit-b5_8x1_1024x1024_160k_cityscapes
282+ In Collection : segformer
283+ Metadata :
284+ backbone : MIT-B5
285+ crop size : (1024,1024)
286+ lr schd : 160000
287+ inference time (ms/im) :
288+ - value : 719.42
289+ hardware : V100
290+ backend : PyTorch
291+ batch size : 1
292+ mode : FP32
293+ resolution : (1024,1024)
294+ Training Memory (GB) : 18.0
295+ Results :
296+ - Task : Semantic Segmentation
297+ Dataset : Cityscapes
298+ Metrics :
299+ mIoU : 82.25
300+ mIoU(ms+flip) : 83.48
301+ Config : configs/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes.py
302+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934-87a052ec.pth
0 commit comments