Skip to content

Edge-connectivity #31691

@YaelDillies

Description

@YaelDillies

Edge-connectivity is an important concept in graph theory, showing up among other things in the statement of Menger's theorem.

Your task, if you accept it, is to define

def IsEdgeReachable (k : ℕ) (u v : V) : Prop :=
  ∀ ⦃s : Set (Sym2 V)⦄, s.encard < k → (G.deleteEdges s).Reachable u v

def IsEdgeConnected (k : ℕ) : Prop := ∀ u v, G.IsEdgeReachable k u v

and prove basic facts such as

@[simp] lemma IsEdgeReachable.rfl : G.IsEdgeReachable k u u := sorry

@[simp] lemma IsEdgeReachable.trans (huv : G.IsEdgeReachable k u v) (hvw : G.IsEdgeReachable k v w) :
      G.IsEdgeReachable k u w := sorry

@[simp] lemma IsEdgeReachable.mono (hkl : k ≤ l) :
    G.IsEdgeReachable l u v → G.IsEdgeReachable k u v := sorry

@[simp] lemma IsEdgeReachable.zero : G.IsEdgeReachable 0 u v := sorry
@[simp] lemma isEdgeReachable_one : G.IsEdgeReachable 1 u v ↔ G.Reachable u v := sorry

lemma isEdgeReachable_succ :
    G.IsEdgeReachable (k + 1) u v ↔ ∀ e, (G.deleteEdges {e}).IsEdgeReachable k u v := sorry

lemma isEdgeConnected_succ :
    G.IsEdgeConnected (k + 1) ↔ ∀ e, (G.deleteEdges {e}).IsEdgeConnected k := sorry

and possibly more lemmas relating G.IsEdgeConnected 2 and G.IsAcyclic. Finally, you could replace the (G.deleteEdges {e}).Reachable u v assumptions in Combinatorics.SimpleGraph.Connectivity.Connected with G.IsEdgeReachable 2 u v.

Metadata

Metadata

Assignees

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions