-
Notifications
You must be signed in to change notification settings - Fork 910
Open
Labels
Description
Edge-connectivity is an important concept in graph theory, showing up among other things in the statement of Menger's theorem.
Your task, if you accept it, is to define
def IsEdgeReachable (k : ℕ) (u v : V) : Prop :=
∀ ⦃s : Set (Sym2 V)⦄, s.encard < k → (G.deleteEdges s).Reachable u v
def IsEdgeConnected (k : ℕ) : Prop := ∀ u v, G.IsEdgeReachable k u vand prove basic facts such as
@[simp] lemma IsEdgeReachable.rfl : G.IsEdgeReachable k u u := sorry
@[simp] lemma IsEdgeReachable.trans (huv : G.IsEdgeReachable k u v) (hvw : G.IsEdgeReachable k v w) :
G.IsEdgeReachable k u w := sorry
@[simp] lemma IsEdgeReachable.mono (hkl : k ≤ l) :
G.IsEdgeReachable l u v → G.IsEdgeReachable k u v := sorry
@[simp] lemma IsEdgeReachable.zero : G.IsEdgeReachable 0 u v := sorry
@[simp] lemma isEdgeReachable_one : G.IsEdgeReachable 1 u v ↔ G.Reachable u v := sorry
lemma isEdgeReachable_succ :
G.IsEdgeReachable (k + 1) u v ↔ ∀ e, (G.deleteEdges {e}).IsEdgeReachable k u v := sorry
lemma isEdgeConnected_succ :
G.IsEdgeConnected (k + 1) ↔ ∀ e, (G.deleteEdges {e}).IsEdgeConnected k := sorryand possibly more lemmas relating G.IsEdgeConnected 2 and G.IsAcyclic. Finally, you could replace the (G.deleteEdges {e}).Reachable u v assumptions in Combinatorics.SimpleGraph.Connectivity.Connected with G.IsEdgeReachable 2 u v.