@@ -532,14 +532,14 @@ def test_nonfinite_limits():
532532@image_comparison (baseline_images = ['imshow' ],
533533 remove_text = True )
534534def test_imshow ():
535- #Create a NxN image
535+ # Create a NxN image
536536 N = 100
537537 (x , y ) = np .indices ((N , N ))
538538 x -= N // 2
539539 y -= N // 2
540540 r = np .sqrt (x ** 2 + y ** 2 - x * y )
541541
542- #Create a contour plot at N/4 and extract both the clip path and transform
542+ # Create a contour plot at N/4 and extract both the clip path and transform
543543 fig = plt .figure ()
544544 ax = fig .add_subplot (111 )
545545
@@ -550,14 +550,14 @@ def test_imshow():
550550def test_imshow_clip ():
551551 # As originally reported by Gellule Xg <[email protected] > 552552
553- #Create a NxN image
553+ # Create a NxN image
554554 N = 100
555555 (x , y ) = np .indices ((N , N ))
556556 x -= N // 2
557557 y -= N // 2
558558 r = np .sqrt (x ** 2 + y ** 2 - x * y )
559559
560- #Create a contour plot at N/4 and extract both the clip path and transform
560+ # Create a contour plot at N/4 and extract both the clip path and transform
561561 fig = plt .figure ()
562562 ax = fig .add_subplot (111 )
563563
@@ -569,7 +569,7 @@ def test_imshow_clip():
569569 from matplotlib .transforms import TransformedPath
570570 clip_path = TransformedPath (clipPath , clipTransform )
571571
572- #Plot the image clipped by the contour
572+ # Plot the image clipped by the contour
573573 ax .imshow (r , clip_path = clip_path )
574574
575575
@@ -851,12 +851,12 @@ def test_markevery_line():
851851 remove_text = True )
852852def test_markevery_linear_scales ():
853853 cases = [None ,
854- 8 ,
855- (30 , 8 ),
856- [16 , 24 , 30 ], [0 ,- 1 ],
857- slice (100 , 200 , 3 ),
858- 0.1 , 0.3 , 1.5 ,
859- (0.0 , 0.1 ), (0.45 , 0.1 )]
854+ 8 ,
855+ (30 , 8 ),
856+ [16 , 24 , 30 ], [0 , - 1 ],
857+ slice (100 , 200 , 3 ),
858+ 0.1 , 0.3 , 1.5 ,
859+ (0.0 , 0.1 ), (0.45 , 0.1 )]
860860
861861 cols = 3
862862 gs = matplotlib .gridspec .GridSpec (len (cases ) // cols + 1 , cols )
@@ -872,16 +872,17 @@ def test_markevery_linear_scales():
872872 plt .title ('markevery=%s' % str (case ))
873873 plt .plot (x , y , 'o' , ls = '-' , ms = 4 , markevery = case )
874874
875+
875876@image_comparison (baseline_images = ['markevery_linear_scales_zoomed' ],
876877 remove_text = True )
877878def test_markevery_linear_scales_zoomed ():
878879 cases = [None ,
879- 8 ,
880- (30 , 8 ),
881- [16 , 24 , 30 ], [0 ,- 1 ],
882- slice (100 , 200 , 3 ),
883- 0.1 , 0.3 , 1.5 ,
884- (0.0 , 0.1 ), (0.45 , 0.1 )]
880+ 8 ,
881+ (30 , 8 ),
882+ [16 , 24 , 30 ], [0 , - 1 ],
883+ slice (100 , 200 , 3 ),
884+ 0.1 , 0.3 , 1.5 ,
885+ (0.0 , 0.1 ), (0.45 , 0.1 )]
885886
886887 cols = 3
887888 gs = matplotlib .gridspec .GridSpec (len (cases ) // cols + 1 , cols )
@@ -904,12 +905,12 @@ def test_markevery_linear_scales_zoomed():
904905 remove_text = True )
905906def test_markevery_log_scales ():
906907 cases = [None ,
907- 8 ,
908- (30 , 8 ),
909- [16 , 24 , 30 ], [0 ,- 1 ],
910- slice (100 , 200 , 3 ),
911- 0.1 , 0.3 , 1.5 ,
912- (0.0 , 0.1 ), (0.45 , 0.1 )]
908+ 8 ,
909+ (30 , 8 ),
910+ [16 , 24 , 30 ], [0 , - 1 ],
911+ slice (100 , 200 , 3 ),
912+ 0.1 , 0.3 , 1.5 ,
913+ (0.0 , 0.1 ), (0.45 , 0.1 )]
913914
914915 cols = 3
915916 gs = matplotlib .gridspec .GridSpec (len (cases ) // cols + 1 , cols )
@@ -927,16 +928,17 @@ def test_markevery_log_scales():
927928 plt .yscale ('log' )
928929 plt .plot (x , y , 'o' , ls = '-' , ms = 4 , markevery = case )
929930
931+
930932@image_comparison (baseline_images = ['markevery_polar' ],
931933 remove_text = True )
932934def test_markevery_polar ():
933935 cases = [None ,
934- 8 ,
935- (30 , 8 ),
936- [16 , 24 , 30 ], [0 ,- 1 ],
937- slice (100 , 200 , 3 ),
938- 0.1 , 0.3 , 1.5 ,
939- (0.0 , 0.1 ), (0.45 , 0.1 )]
936+ 8 ,
937+ (30 , 8 ),
938+ [16 , 24 , 30 ], [0 , - 1 ],
939+ slice (100 , 200 , 3 ),
940+ 0.1 , 0.3 , 1.5 ,
941+ (0.0 , 0.1 ), (0.45 , 0.1 )]
940942
941943 cols = 3
942944 gs = matplotlib .gridspec .GridSpec (len (cases ) // cols + 1 , cols )
@@ -947,7 +949,7 @@ def test_markevery_polar():
947949 for i , case in enumerate (cases ):
948950 row = (i // cols )
949951 col = i % cols
950- plt .subplot (gs [row , col ], polar = True )
952+ plt .subplot (gs [row , col ], polar = True )
951953 plt .title ('markevery=%s' % str (case ))
952954 plt .plot (theta , r , 'o' , ls = '-' , ms = 4 , markevery = case )
953955
@@ -988,7 +990,6 @@ def test_hist_steplog():
988990 ax = plt .subplot (4 , 1 , 2 )
989991 plt .hist (data_pos , 100 , histtype = 'stepfilled' , log = True )
990992
991-
992993 ax = plt .subplot (4 , 1 , 3 )
993994 plt .hist (data , 100 , weights = weights , histtype = 'stepfilled' , log = True )
994995
@@ -1040,7 +1041,7 @@ def test_contour_colorbar():
10401041@image_comparison (baseline_images = ['hist2d' ])
10411042def test_hist2d ():
10421043 np .random .seed (0 )
1043- #make it not symetric in case we switch x and y axis
1044+ # make it not symetric in case we switch x and y axis
10441045 x = np .random .randn (100 )* 2 + 5
10451046 y = np .random .randn (100 )- 2
10461047 fig = plt .figure ()
@@ -1051,8 +1052,8 @@ def test_hist2d():
10511052@image_comparison (baseline_images = ['hist2d_transpose' ])
10521053def test_hist2d_transpose ():
10531054 np .random .seed (0 )
1054- #make sure the the output from np.histogram is transposed before
1055- #passing to pcolorfast
1055+ # make sure the the output from np.histogram is transposed before
1056+ # passing to pcolorfast
10561057 x = np .array ([5 ]* 100 )
10571058 y = np .random .randn (100 )- 2
10581059 fig = plt .figure ()
@@ -1601,6 +1602,7 @@ def test_boxplot_bad_medians_1():
16011602 fig , ax = plt .subplots ()
16021603 assert_raises (ValueError , ax .boxplot , x , usermedians = [1 , 2 ])
16031604
1605+
16041606@cleanup
16051607def test_boxplot_bad_medians_2 ():
16061608 x = np .linspace (- 7 , 7 , 140 )
@@ -1808,7 +1810,7 @@ def test_manage_xticks():
18081810 np .random .seed (0 )
18091811 y1 = np .random .normal (10 , 3 , 20 )
18101812 y2 = np .random .normal (3 , 1 , 20 )
1811- ax .boxplot ([y1 , y2 ], positions = [1 ,2 ],
1813+ ax .boxplot ([y1 , y2 ], positions = [1 , 2 ],
18121814 manage_xticks = False )
18131815 new_xlim = ax .get_xlim ()
18141816 assert_array_equal (old_xlim , new_xlim )
@@ -2192,6 +2194,16 @@ def test_empty_eventplot():
21922194 plt .draw ()
21932195
21942196
2197+ @image_comparison (baseline_images = ['marker_styles' ], extensions = ['png' ], remove_text = True )
2198+ def test_marker_styles ():
2199+ fig = plt .figure ()
2200+ ax = fig .add_subplot (111 )
2201+ for y , marker in enumerate (sorted (matplotlib .markers .MarkerStyle .markers .keys (),
2202+ key = lambda x : str (type (x ))+ str (x ))):
2203+ ax .plot ((y % 2 )* 5 + np .arange (10 )* 10 , np .ones (10 )* 10 * y , linestyle = '' , marker = marker ,
2204+ markersize = 10 + y / 5 , label = marker )
2205+
2206+
21952207@image_comparison (baseline_images = ['vertex_markers' ], extensions = ['png' ],
21962208 remove_text = True )
21972209def test_vertex_markers ():
@@ -3251,7 +3263,7 @@ def test_vline_limit():
32513263
32523264@cleanup
32533265def test_empty_shared_subplots ():
3254- #empty plots with shared axes inherit limits from populated plots
3266+ # empty plots with shared axes inherit limits from populated plots
32553267 fig , axes = plt .subplots (nrows = 1 , ncols = 2 , sharex = True , sharey = True )
32563268 axes [0 ].plot ([1 , 2 , 3 ], [2 , 4 , 6 ])
32573269 x0 , x1 = axes [1 ].get_xlim ()
@@ -3305,7 +3317,7 @@ def test_pie_linewidth_0():
33053317 labels = 'Frogs' , 'Hogs' , 'Dogs' , 'Logs'
33063318 sizes = [15 , 30 , 45 , 10 ]
33073319 colors = ['yellowgreen' , 'gold' , 'lightskyblue' , 'lightcoral' ]
3308- explode = (0 , 0.1 , 0 , 0 ) # only "explode" the 2nd slice (i.e. 'Hogs')
3320+ explode = (0 , 0.1 , 0 , 0 ) # only "explode" the 2nd slice (i.e. 'Hogs')
33093321
33103322 plt .pie (sizes , explode = explode , labels = labels , colors = colors ,
33113323 autopct = '%1.1f%%' , shadow = True , startangle = 90 ,
@@ -3320,7 +3332,7 @@ def test_pie_linewidth_2():
33203332 labels = 'Frogs' , 'Hogs' , 'Dogs' , 'Logs'
33213333 sizes = [15 , 30 , 45 , 10 ]
33223334 colors = ['yellowgreen' , 'gold' , 'lightskyblue' , 'lightcoral' ]
3323- explode = (0 , 0.1 , 0 , 0 ) # only "explode" the 2nd slice (i.e. 'Hogs')
3335+ explode = (0 , 0.1 , 0 , 0 ) # only "explode" the 2nd slice (i.e. 'Hogs')
33243336
33253337 plt .pie (sizes , explode = explode , labels = labels , colors = colors ,
33263338 autopct = '%1.1f%%' , shadow = True , startangle = 90 ,
@@ -3335,14 +3347,15 @@ def test_pie_ccw_true():
33353347 labels = 'Frogs' , 'Hogs' , 'Dogs' , 'Logs'
33363348 sizes = [15 , 30 , 45 , 10 ]
33373349 colors = ['yellowgreen' , 'gold' , 'lightskyblue' , 'lightcoral' ]
3338- explode = (0 , 0.1 , 0 , 0 ) # only "explode" the 2nd slice (i.e. 'Hogs')
3350+ explode = (0 , 0.1 , 0 , 0 ) # only "explode" the 2nd slice (i.e. 'Hogs')
33393351
33403352 plt .pie (sizes , explode = explode , labels = labels , colors = colors ,
33413353 autopct = '%1.1f%%' , shadow = True , startangle = 90 ,
33423354 counterclock = True )
33433355 # Set aspect ratio to be equal so that pie is drawn as a circle.
33443356 plt .axis ('equal' )
33453357
3358+
33463359@cleanup
33473360def test_margins ():
33483361 # test all ways margins can be called
@@ -3363,6 +3376,7 @@ def test_margins():
33633376 ax3 .margins (x = 1 , y = 0.5 )
33643377 assert_equal (ax3 .margins (), (1 , 0.5 ))
33653378
3379+
33663380@cleanup
33673381def test_pathological_hexbin ():
33683382 # issue #2863
0 commit comments