You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: _papers/QA-视觉问答-A-综述.md
+33-33Lines changed: 33 additions & 33 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -10,39 +10,39 @@ Index
10
10
<!-- TOC -->
11
11
12
12
-[VQA 简述](#vqa-简述)
13
-
-[VQA 与其他图像任务](#vqa-与其他图像任务)
14
-
-[基于对象检测的任务](#基于对象检测的任务)
15
-
-[图像描述任务](#图像描述任务)
16
-
-[DenseCap](#densecap)
17
-
-[VQA 中的数据集](#vqa-中的数据集)
18
-
-[DAQUAR](#daquar)
19
-
-[COCO-QA](#coco-qa)
20
-
-[VQA Dataset](#vqa-dataset)
21
-
-[FM-IQA](#fm-iqa)
22
-
-[Visual Genome](#visual-genome)
23
-
-[Visual7W](#visual7w)
24
-
-[SHAPES](#shapes)
25
-
-[VQA 的评价方法 TODO](#vqa-的评价方法-todo)
13
+
-[VQA 与其他图像任务](#vqa-与其他图像任务)
14
+
- [基于对象检测的任务](#基于对象检测的任务)
15
+
- [图像描述任务](#图像描述任务)
16
+
- [DenseCap](#densecap)
17
+
-[VQA 中的数据集](#vqa-中的数据集)
18
+
-[DAQUAR](#daquar)
19
+
-[COCO-QA](#coco-qa)
20
+
-[VQA Dataset](#vqa-dataset)
21
+
-[FM-IQA](#fm-iqa)
22
+
-[Visual Genome](#visual-genome)
23
+
-[Visual7W](#visual7w)
24
+
-[SHAPES](#shapes)
25
+
-[VQA 的评价方法 TODO](#vqa-的评价方法-todo)
26
26
-[主流模型与方法](#主流模型与方法)
27
-
-[基线模型](#基线模型)
28
-
-[分类模型](#分类模型)
29
-
-[生成模型](#生成模型)
30
-
-[贝叶斯模型](#贝叶斯模型)
31
-
-[基于 Attention 的模型](#基于-attention-的模型)
32
-
-[基于 Edge Boxes 的方法](#基于-edge-boxes-的方法)
33
-
-[基于 Uniform Grid 的方法](#基于-uniform-grid-的方法)
34
-
-[[49] Stacked Attention Networks for Image Question Answering(SAN)](#49-stacked-attention-networks-for-image-question-answeringsan)
35
-
-[[48] Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering](#48-ask-attend-and-answer-exploring-question-guided-spatial-attention-for-visual-question-answering)
36
-
-[[52] Dynamic memory networks for visual and textual question answering](#52-dynamic-memory-networks-for-visual-and-textual-question-answering)
37
-
-[[54] Hierarchical Question-Image Co-Attention for Visual Question Answering](#54-hierarchical-question-image-co-attention-for-visual-question-answering)
38
-
-[[56] Dual attention networks for multimodal reasoning and matching](#56-dual-attention-networks-for-multimodal-reasoning-and-matching)
39
-
-[基于双线性池化的模型](#基于双线性池化的模型)
40
-
-[[46] Multimodal compact bilinear pooling for visual question answering and visual grounding](#46-multimodal-compact-bilinear-pooling-for-visual-question-answering-and-visual-grounding)
41
-
-[[57] Hadamard Product for Low-rank Bilinear Pooling](#57-hadamard-product-for-low-rank-bilinear-pooling)
42
-
-[组合模型](#组合模型)
43
-
-[[44] Deep Compositional Question Answering with Neural Module Networks](#44-deep-compositional-question-answering-with-neural-module-networks)
44
-
-[[55] Training recurrent answering units with joint loss minimization for VQA](#55-training-recurrent-answering-units-with-joint-loss-minimization-for-vqa)
45
-
-[其他模型 TODO](#其他模型-todo)
27
+
-[基线模型](#基线模型)
28
+
- [分类模型](#分类模型)
29
+
- [生成模型](#生成模型)
30
+
-[贝叶斯模型](#贝叶斯模型)
31
+
-[基于 Attention 的模型](#基于-attention-的模型)
32
+
-[基于 Edge Boxes 的方法](#基于-edge-boxes-的方法)
33
+
-[基于 Uniform Grid 的方法](#基于-uniform-grid-的方法)
34
+
-[[49] Stacked Attention Networks for Image Question Answering(SAN)](#49-stacked-attention-networks-for-image-question-answeringsan)
35
+
-[[48] Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering](#48-ask-attend-and-answer-exploring-question-guided-spatial-attention-for-visual-question-answering)
36
+
-[[52] Dynamic memory networks for visual and textual question answering](#52-dynamic-memory-networks-for-visual-and-textual-question-answering)
37
+
-[[54] Hierarchical Question-Image Co-Attention for Visual Question Answering](#54-hierarchical-question-image-co-attention-for-visual-question-answering)
38
+
-[[56] Dual attention networks for multimodal reasoning and matching](#56-dual-attention-networks-for-multimodal-reasoning-and-matching)
39
+
-[基于双线性池化的模型](#基于双线性池化的模型)
40
+
-[[46] Multimodal compact bilinear pooling for visual question answering and visual grounding](#46-multimodal-compact-bilinear-pooling-for-visual-question-answering-and-visual-grounding)
41
+
-[[57] Hadamard Product for Low-rank Bilinear Pooling](#57-hadamard-product-for-low-rank-bilinear-pooling)
42
+
-[组合模型](#组合模型)
43
+
-[[44] Deep Compositional Question Answering with Neural Module Networks](#44-deep-compositional-question-answering-with-neural-module-networks)
44
+
-[[55] Training recurrent answering units with joint loss minimization for VQA](#55-training-recurrent-answering-units-with-joint-loss-minimization-for-vqa)
0 commit comments