|
| 1 | +use aiken/crypto |
| 2 | +use aiken/crypto/bls12_381/g1 |
| 3 | +use aiken/crypto/bls12_381/scalar.{Scalar} |
| 4 | +use aiken/primitive/bytearray |
| 5 | + |
| 6 | +/// Alpha is the generator and beta is the public value. The pair is formed from |
| 7 | +/// the relationship g^x = u, where g is the generator and u is the public value. |
| 8 | +/// The value x is a secret integer used to create the public value from the |
| 9 | +/// generator. |
| 10 | +pub type Register { |
| 11 | + // the generator, #<Bls12_381, G1> |
| 12 | + generator: ByteArray, |
| 13 | + // the public value, #<Bls12_381, G1> |
| 14 | + public_value: ByteArray, |
| 15 | +} |
| 16 | + |
| 17 | +/// This simulates randomizing a register. It is used for testing purposes only. |
| 18 | +/// |
| 19 | +/// ```aiken |
| 20 | +/// registry.randomize(register, random_scalar) |
| 21 | +/// ``` |
| 22 | +fn randomize(datum: Register, s: Scalar) -> Register { |
| 23 | + // decompress the generator and public value |
| 24 | + let g: G1Element = g1.decompress(datum.generator) |
| 25 | + let u: G1Element = g1.decompress(datum.public_value) |
| 26 | + // now randomize the register elements |
| 27 | + let g_s: G1Element = g1.scale(g, s) |
| 28 | + let u_s: G1Element = g1.scale(u, s) |
| 29 | + // recompress the new randomized elements |
| 30 | + Register { generator: g_s |> g1.compress, public_value: u_s |> g1.compress } |
| 31 | +} |
| 32 | + |
| 33 | +test cheapest_hash() { |
| 34 | + // PASS [mem: 805, cpu: 2467639] expensive hash |
| 35 | + // crypto.keccak_256(#"") == #"c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470" |
| 36 | + // |
| 37 | + // PASS [mem: 805, cpu: 1663641] cheap hash |
| 38 | + // crypto.sha3_256(#"") == #"a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a" |
| 39 | + // |
| 40 | + // PASS [mem: 805, cpu: 434990] cheap hash |
| 41 | + // crypto.sha2_256(#"") == #"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855" |
| 42 | + // |
| 43 | + // PASS [mem: 805, cpu: 357676] cheaper hash |
| 44 | + // crypto.blake2b_224(#"") == #"836cc68931c2e4e3e838602eca1902591d216837bafddfe6f0c8cb07" |
| 45 | + // |
| 46 | + // PASS [mem: 805, cpu: 351411] cheapest hash |
| 47 | + crypto.blake2b_256(#"") == #"0e5751c026e543b2e8ab2eb06099daa1d1e5df47778f7787faab45cdf12fe3a8" |
| 48 | +} |
| 49 | + |
| 50 | +/// A bytearray of a value for the challenge c. This process should act like a |
| 51 | +/// random oracle providing a large challenge value for the user. The inputs |
| 52 | +/// should be compressed g1 elements but they can also be compressed integers. |
| 53 | +/// |
| 54 | +/// ```aiken |
| 55 | +/// registry.fiat_shamir_heuristic(g_b, g_r_b, u_b, b) |
| 56 | +/// ``` |
| 57 | +fn fiat_shamir_heuristic( |
| 58 | + // compressed g element |
| 59 | + g_b: ByteArray, |
| 60 | + // compressed g^r element |
| 61 | + g_r_b: ByteArray, |
| 62 | + // compressed g^x element |
| 63 | + u_b: ByteArray, |
| 64 | + // a bound used to create one time transforms |
| 65 | + b: ByteArray, |
| 66 | +) -> ByteArray { |
| 67 | + // concat g_b, g_r_b, u_b, and b together then hash the result using the |
| 68 | + // blake2b_256 hash function as it is the cheapest on chain |
| 69 | + // as of right now 2.1.0 stdlib we are forced to use blake2b_224 |
| 70 | + g_b |
| 71 | + |> bytearray.concat(g_r_b) |
| 72 | + |> bytearray.concat(u_b) |
| 73 | + |> bytearray.concat(b) |
| 74 | + |> crypto.blake2b_224() |
| 75 | + // |> crypto.blake2b_256() |
| 76 | +} |
| 77 | + |
| 78 | +test empty_fiat_shamir_transform() { |
| 79 | + // fiat_shamir_heuristic(#"", #"", #"", #"") == #"0e5751c026e543b2e8ab2eb06099daa1d1e5df47778f7787faab45cdf12fe3a8" |
| 80 | + fiat_shamir_heuristic(#"", #"", #"", #"") == #"836cc68931c2e4e3e838602eca1902591d216837bafddfe6f0c8cb07" |
| 81 | +} |
| 82 | + |
| 83 | +test real_fiat_shamir_transform() { |
| 84 | + // fiat_shamir_heuristic( |
| 85 | + // #"97f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb", |
| 86 | + // #"81b223cea171a87feba9b7749a2df7601c5a75ae01155fadc124a2ac49099a514cf1e7d9cdc769dceab14a95bd6cb0bd", |
| 87 | + // #"a09d99e02f7200526dc55ef722cc171e7aa14fc732614c02ac58d59d7026a7eb18d8798f6928ea2b513f3a4feb0c94d1", |
| 88 | + // #"acab", |
| 89 | + // ) == #"8f9409d05727322c9f2d1d0adf817b8d0e3a681977edc9ab866879a4a4f8f5b9" |
| 90 | + fiat_shamir_heuristic( |
| 91 | + #"97f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb", |
| 92 | + #"81b223cea171a87feba9b7749a2df7601c5a75ae01155fadc124a2ac49099a514cf1e7d9cdc769dceab14a95bd6cb0bd", |
| 93 | + #"a09d99e02f7200526dc55ef722cc171e7aa14fc732614c02ac58d59d7026a7eb18d8798f6928ea2b513f3a4feb0c94d1", |
| 94 | + #"acab", |
| 95 | + ) == #"1b556f7bb6a26d00a7c79468794858ba6aa0e41a2c3af0754ec4a11d" |
| 96 | +} |
| 97 | + |
| 98 | +/// A Schnorr proof to prove knowledge of the secret value x without revealing |
| 99 | +/// the value in the process. The proof uses, in multiplicative form, |
| 100 | +/// g^z = g^r * u^c, where z = r + c*x and u = g^x. This function uses the |
| 101 | +/// Fiat-Shamir heuristic for non-interactivity. |
| 102 | +/// |
| 103 | +/// ```aiken |
| 104 | +/// registry.prove(datum, z_b, g_r_b, bound) |
| 105 | +/// ``` |
| 106 | +pub fn prove( |
| 107 | + datum: Register, |
| 108 | + z_b: ByteArray, |
| 109 | + g_r_b: ByteArray, |
| 110 | + bound: ByteArray, |
| 111 | +) -> Bool { |
| 112 | + // |
| 113 | + // the z computation: g^z = g^(r + c * x) = g^r * g^(c * x) = g^r * (g^x)^c |
| 114 | + expect Some(z): Option<Scalar> = scalar.from_bytearray_big_endian(z_b) |
| 115 | + let g_z: G1Element = g1.decompress(datum.generator) |> g1.scale(z) |
| 116 | + // |
| 117 | + // use the fiat-shamir heuristic to calculate the challenge then convert it to an integer |
| 118 | + expect Some(c): Option<Scalar> = |
| 119 | + fiat_shamir_heuristic(datum.generator, g_r_b, datum.public_value, bound) |
| 120 | + |> scalar.from_bytearray_big_endian() |
| 121 | + // |
| 122 | + // the u^c computation: u^c = (g^x)^c = g^(x * c) |
| 123 | + let u_c: G1Element = g1.decompress(datum.public_value) |> g1.scale(c) |
| 124 | + // |
| 125 | + // check if equation: g^z = g^r * u^c is true |
| 126 | + // |
| 127 | + g_z |> g1.equal(g1.add(g1.decompress(g_r_b), u_c)) |
| 128 | +} |
| 129 | + |
| 130 | +test valid_schnorr_proof() { |
| 131 | + // some secret x |
| 132 | + expect Some(x): Option<Scalar> = |
| 133 | + scalar.new( |
| 134 | + 42435875175126190479447740508185965837690552500527637822603658699938581184513, |
| 135 | + ) |
| 136 | + // the datum register using the g1 generator and the public value for x |
| 137 | + let datum: Register = |
| 138 | + Register { |
| 139 | + generator: g1.generator |> g1.compress, |
| 140 | + public_value: g1.generator |> g1.scale(x) |> g1.compress, |
| 141 | + } |
| 142 | + // a random number |
| 143 | + expect Some(r): Option<Scalar> = |
| 144 | + scalar.new( |
| 145 | + 32435875175126190479447740508185965837690552500527637822603658699938581184513, |
| 146 | + ) |
| 147 | + // the bound, something unique from the tx |
| 148 | + let bound: ByteArray = #"acab" |
| 149 | + // calculate the g^r term |
| 150 | + let g: G1Element = g1.generator |
| 151 | + let g_r: G1Element = g1.scale(g, r) |
| 152 | + let g_r_b: ByteArray = g_r |> g1.compress |
| 153 | + // the challenge number using a fiat shamir transform |
| 154 | + let c_b: ByteArray = |
| 155 | + fiat_shamir_heuristic(datum.generator, g_r_b, datum.public_value, bound) |
| 156 | + expect Some(c): Option<Scalar> = scalar.from_bytearray_big_endian(c_b) |
| 157 | + // the z value |
| 158 | + let z: Scalar = scalar.mul(c, x) |> scalar.add(r) |
| 159 | + let z_b: ByteArray = scalar.to_bytearray_big_endian(z, 0) |
| 160 | + prove(datum, z_b, g_r_b, bound) |
| 161 | +} |
| 162 | + |
| 163 | +test randomized_valid_schnorr_proof() { |
| 164 | + // some secret x |
| 165 | + expect Some(x): Option<Scalar> = |
| 166 | + scalar.new( |
| 167 | + 12435875175126190479447740508185965837690552500527637822603658699938581184513, |
| 168 | + ) |
| 169 | + // the datum register using the g1 generator and the public value for x |
| 170 | + let datum: Register = |
| 171 | + Register { |
| 172 | + generator: g1.generator |> g1.compress, |
| 173 | + public_value: g1.generator |> g1.scale(x) |> g1.compress, |
| 174 | + } |
| 175 | + // a random number |
| 176 | + expect Some(r): Option<Scalar> = |
| 177 | + scalar.new( |
| 178 | + 32435875175126190479447740508185965837690552500527637822603658699938581184513, |
| 179 | + ) |
| 180 | + // another random number |
| 181 | + expect Some(d): Option<Scalar> = |
| 182 | + scalar.new( |
| 183 | + 12435875175126190479447740508185965837690552500527637822603658699938581184513, |
| 184 | + ) |
| 185 | + // rerandomize the a0 register |
| 186 | + let datum_rng: Register = randomize(datum, d) |
| 187 | + // the bound, something unique from the tx |
| 188 | + let bound: ByteArray = #"acabface" |
| 189 | + // calculate the g^r term |
| 190 | + let g: G1Element = datum_rng.generator |> g1.decompress |
| 191 | + let g_r: G1Element = g1.scale(g, r) |
| 192 | + let g_r_b: ByteArray = g_r |> g1.compress |
| 193 | + // the challenge number using a fiat shamir transform |
| 194 | + let c_b: ByteArray = |
| 195 | + fiat_shamir_heuristic( |
| 196 | + datum_rng.generator, |
| 197 | + g_r_b, |
| 198 | + datum_rng.public_value, |
| 199 | + bound, |
| 200 | + ) |
| 201 | + expect Some(c): Option<Scalar> = scalar.from_bytearray_big_endian(c_b) |
| 202 | + // the z value |
| 203 | + let z: Scalar = scalar.mul(c, x) |> scalar.add(r) |
| 204 | + let z_b: ByteArray = scalar.to_bytearray_big_endian(z, 0) |
| 205 | + prove(datum_rng, z_b, g_r_b, bound) |
| 206 | +} |
| 207 | + |
| 208 | +test invalid_schnorr_proof() fail { |
| 209 | + // some secret x |
| 210 | + expect Some(x): Option<Scalar> = |
| 211 | + scalar.new( |
| 212 | + 42435875175126190479447740508185965837690552500527637822603658699938581184513, |
| 213 | + ) |
| 214 | + // the datum register using the g1 generator and the public value for x |
| 215 | + let datum: Register = |
| 216 | + Register { |
| 217 | + generator: g1.generator |> g1.compress, |
| 218 | + public_value: g1.generator |> g1.scale(x) |> g1.compress, |
| 219 | + } |
| 220 | + // a random number |
| 221 | + expect Some(r): Option<Scalar> = |
| 222 | + scalar.new( |
| 223 | + 32435875175126190479447740508185965837690552500527637822603658699938581184513, |
| 224 | + ) |
| 225 | + // the bound, something unique from the tx |
| 226 | + let bound: ByteArray = #"" |
| 227 | + // calculate the g^r term |
| 228 | + let g: G1Element = g1.generator |
| 229 | + let g_r: G1Element = g1.scale(g, r) |
| 230 | + let g_r_b: ByteArray = g_r |> g1.compress |
| 231 | + // the challenge number using a fiat shamir transform |
| 232 | + let c_b: ByteArray = |
| 233 | + fiat_shamir_heuristic(datum.generator, g_r_b, datum.public_value, bound) |
| 234 | + expect Some(c): Option<Scalar> = scalar.from_bytearray_big_endian(c_b) |
| 235 | + // the bad z value, it assumes the secret is the challenge |
| 236 | + let z: Scalar = scalar.mul(c, c) |> scalar.add(r) |
| 237 | + let z_b: ByteArray = scalar.to_bytearray_big_endian(z, 0) |
| 238 | + prove(datum, z_b, g_r_b, bound) |
| 239 | +} |
0 commit comments