|
| 1 | +import numpy as np |
| 2 | + |
| 3 | + |
| 4 | +def intersect_and_union(pred_label, label, num_classes, ignore_index): |
| 5 | + """Calculate intersection and Union. |
| 6 | +
|
| 7 | + Args: |
| 8 | + pred_label (ndarray): Prediction segmentation map |
| 9 | + label (ndarray): Ground truth segmentation map |
| 10 | + num_classes (int): Number of categories |
| 11 | + ignore_index (int): Index that will be ignored in evaluation. |
| 12 | +
|
| 13 | + Returns: |
| 14 | + ndarray: The intersection of prediction and ground truth histogram |
| 15 | + on all classes |
| 16 | + ndarray: The union of prediction and ground truth histogram on all |
| 17 | + classes |
| 18 | + ndarray: The prediction histogram on all classes. |
| 19 | + ndarray: The ground truth histogram on all classes. |
| 20 | + """ |
| 21 | + |
| 22 | + mask = (label != ignore_index) |
| 23 | + pred_label = pred_label[mask] |
| 24 | + label = label[mask] |
| 25 | + |
| 26 | + intersect = pred_label[pred_label == label] |
| 27 | + area_intersect, _ = np.histogram( |
| 28 | + intersect, bins=np.arange(num_classes + 1)) |
| 29 | + area_pred_label, _ = np.histogram( |
| 30 | + pred_label, bins=np.arange(num_classes + 1)) |
| 31 | + area_label, _ = np.histogram(label, bins=np.arange(num_classes + 1)) |
| 32 | + area_union = area_pred_label + area_label - area_intersect |
| 33 | + |
| 34 | + return area_intersect, area_union, area_pred_label, area_label |
| 35 | + |
| 36 | + |
| 37 | +def total_intersect_and_union(results, gt_seg_maps, num_classes, ignore_index): |
| 38 | + """Calculate Total Intersection and Union. |
| 39 | +
|
| 40 | + Args: |
| 41 | + results (list[ndarray]): List of prediction segmentation maps |
| 42 | + gt_seg_maps (list[ndarray]): list of ground truth segmentation maps |
| 43 | + num_classes (int): Number of categories |
| 44 | + ignore_index (int): Index that will be ignored in evaluation. |
| 45 | +
|
| 46 | + Returns: |
| 47 | + ndarray: The intersection of prediction and ground truth histogram |
| 48 | + on all classes |
| 49 | + ndarray: The union of prediction and ground truth histogram on all |
| 50 | + classes |
| 51 | + ndarray: The prediction histogram on all classes. |
| 52 | + ndarray: The ground truth histogram on all classes. |
| 53 | + """ |
| 54 | + |
| 55 | + num_imgs = len(results) |
| 56 | + assert len(gt_seg_maps) == num_imgs |
| 57 | + total_area_intersect = np.zeros((num_classes, ), dtype=np.float) |
| 58 | + total_area_union = np.zeros((num_classes, ), dtype=np.float) |
| 59 | + total_area_pred_label = np.zeros((num_classes, ), dtype=np.float) |
| 60 | + total_area_label = np.zeros((num_classes, ), dtype=np.float) |
| 61 | + for i in range(num_imgs): |
| 62 | + area_intersect, area_union, area_pred_label, area_label = \ |
| 63 | + intersect_and_union(results[i], gt_seg_maps[i], num_classes, |
| 64 | + ignore_index=ignore_index) |
| 65 | + total_area_intersect += area_intersect |
| 66 | + total_area_union += area_union |
| 67 | + total_area_pred_label += area_pred_label |
| 68 | + total_area_label += area_label |
| 69 | + return total_area_intersect, total_area_union, \ |
| 70 | + total_area_pred_label, total_area_label |
| 71 | + |
| 72 | + |
| 73 | +def mean_iou(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None): |
| 74 | + """Calculate Mean Intersection and Union (mIoU) |
| 75 | +
|
| 76 | + Args: |
| 77 | + results (list[ndarray]): List of prediction segmentation maps |
| 78 | + gt_seg_maps (list[ndarray]): list of ground truth segmentation maps |
| 79 | + num_classes (int): Number of categories |
| 80 | + ignore_index (int): Index that will be ignored in evaluation. |
| 81 | + nan_to_num (int, optional): If specified, NaN values will be replaced |
| 82 | + by the numbers defined by the user. Default: None. |
| 83 | +
|
| 84 | + Returns: |
| 85 | + float: Overall accuracy on all images. |
| 86 | + ndarray: Per category accuracy, shape (num_classes, ) |
| 87 | + ndarray: Per category IoU, shape (num_classes, ) |
| 88 | + """ |
| 89 | + |
| 90 | + all_acc, acc, iou = eval_metrics( |
| 91 | + results=results, |
| 92 | + gt_seg_maps=gt_seg_maps, |
| 93 | + num_classes=num_classes, |
| 94 | + ignore_index=ignore_index, |
| 95 | + metrics=['mIoU'], |
| 96 | + nan_to_num=nan_to_num) |
| 97 | + return all_acc, acc, iou |
| 98 | + |
| 99 | + |
| 100 | +def mean_dice(results, |
| 101 | + gt_seg_maps, |
| 102 | + num_classes, |
| 103 | + ignore_index, |
| 104 | + nan_to_num=None): |
| 105 | + """Calculate Mean Dice (mDice) |
| 106 | +
|
| 107 | + Args: |
| 108 | + results (list[ndarray]): List of prediction segmentation maps |
| 109 | + gt_seg_maps (list[ndarray]): list of ground truth segmentation maps |
| 110 | + num_classes (int): Number of categories |
| 111 | + ignore_index (int): Index that will be ignored in evaluation. |
| 112 | + nan_to_num (int, optional): If specified, NaN values will be replaced |
| 113 | + by the numbers defined by the user. Default: None. |
| 114 | +
|
| 115 | + Returns: |
| 116 | + float: Overall accuracy on all images. |
| 117 | + ndarray: Per category accuracy, shape (num_classes, ) |
| 118 | + ndarray: Per category dice, shape (num_classes, ) |
| 119 | + """ |
| 120 | + |
| 121 | + all_acc, acc, dice = eval_metrics( |
| 122 | + results=results, |
| 123 | + gt_seg_maps=gt_seg_maps, |
| 124 | + num_classes=num_classes, |
| 125 | + ignore_index=ignore_index, |
| 126 | + metrics=['mDice'], |
| 127 | + nan_to_num=nan_to_num) |
| 128 | + return all_acc, acc, dice |
| 129 | + |
| 130 | + |
| 131 | +def eval_metrics(results, |
| 132 | + gt_seg_maps, |
| 133 | + num_classes, |
| 134 | + ignore_index, |
| 135 | + metrics=['mIoU'], |
| 136 | + nan_to_num=None): |
| 137 | + """Calculate evaluation metrics |
| 138 | + Args: |
| 139 | + results (list[ndarray]): List of prediction segmentation maps |
| 140 | + gt_seg_maps (list[ndarray]): list of ground truth segmentation maps |
| 141 | + num_classes (int): Number of categories |
| 142 | + ignore_index (int): Index that will be ignored in evaluation. |
| 143 | + metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'. |
| 144 | + nan_to_num (int, optional): If specified, NaN values will be replaced |
| 145 | + by the numbers defined by the user. Default: None. |
| 146 | + Returns: |
| 147 | + float: Overall accuracy on all images. |
| 148 | + ndarray: Per category accuracy, shape (num_classes, ) |
| 149 | + ndarray: Per category evalution metrics, shape (num_classes, ) |
| 150 | + """ |
| 151 | + |
| 152 | + if isinstance(metrics, str): |
| 153 | + metrics = [metrics] |
| 154 | + allowed_metrics = ['mIoU', 'mDice'] |
| 155 | + if not set(metrics).issubset(set(allowed_metrics)): |
| 156 | + raise KeyError('metrics {} is not supported'.format(metrics)) |
| 157 | + total_area_intersect, total_area_union, total_area_pred_label, \ |
| 158 | + total_area_label = total_intersect_and_union(results, gt_seg_maps, |
| 159 | + num_classes, |
| 160 | + ignore_index=ignore_index) |
| 161 | + all_acc = total_area_intersect.sum() / total_area_label.sum() |
| 162 | + acc = total_area_intersect / total_area_label |
| 163 | + ret_metrics = [all_acc, acc] |
| 164 | + for metric in metrics: |
| 165 | + if metric == 'mIoU': |
| 166 | + iou = total_area_intersect / total_area_union |
| 167 | + ret_metrics.append(iou) |
| 168 | + elif metric == 'mDice': |
| 169 | + dice = 2 * total_area_intersect / ( |
| 170 | + total_area_pred_label + total_area_label) |
| 171 | + ret_metrics.append(dice) |
| 172 | + if nan_to_num is not None: |
| 173 | + ret_metrics = [ |
| 174 | + np.nan_to_num(metric, nan=nan_to_num) for metric in ret_metrics |
| 175 | + ] |
| 176 | + return ret_metrics |
0 commit comments