@@ -73,13 +73,15 @@ class calls the ``fit`` method of each sub-estimator on random samples
7373
7474MAX_INT = np .iinfo (np .int32 ).max
7575
76+
7677def _generate_sample_indices (random_state , n_samples ):
7778 """Private function used to _parallel_build_trees function."""
7879 random_instance = check_random_state (random_state )
7980 sample_indices = random_instance .randint (0 , n_samples , n_samples )
8081
8182 return sample_indices
8283
84+
8385def _generate_unsampled_indices (random_state , n_samples ):
8486 """Private function used to forest._set_oob_score function."""
8587 sample_indices = _generate_sample_indices (random_state , n_samples )
@@ -90,6 +92,7 @@ def _generate_unsampled_indices(random_state, n_samples):
9092
9193 return unsampled_indices
9294
95+
9396def _parallel_build_trees (tree , forest , X , y , sample_weight , tree_idx , n_trees ,
9497 verbose = 0 , class_weight = None ):
9598 """Private function used to fit a single tree in parallel."""
@@ -181,6 +184,8 @@ def apply(self, X):
181184 def decision_path (self , X ):
182185 """Return the decision path in the forest
183186
187+ .. versionadded:: 0.18
188+
184189 Parameters
185190 ----------
186191 X : array-like or sparse matrix, shape = [n_samples, n_features]
@@ -197,6 +202,7 @@ def decision_path(self, X):
197202 n_nodes_ptr : array of size (n_estimators + 1, )
198203 The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]]
199204 gives the indicator value for the i-th estimator.
205+
200206 """
201207 X = self ._validate_X_predict (X )
202208 indicators = Parallel (n_jobs = self .n_jobs , verbose = self .verbose ,
@@ -786,6 +792,9 @@ class RandomForestClassifier(ForestClassifier):
786792 `ceil(min_samples_split * n_samples)` are the minimum
787793 number of samples for each split.
788794
795+ .. versionchanged:: 0.18
796+ Added float values for percentages.
797+
789798 min_samples_leaf : int, float, optional (default=1)
790799 The minimum number of samples required to be at a leaf node:
791800
@@ -794,6 +803,9 @@ class RandomForestClassifier(ForestClassifier):
794803 `ceil(min_samples_leaf * n_samples)` are the minimum
795804 number of samples for each node.
796805
806+ .. versionchanged:: 0.18
807+ Added float values for percentages.
808+
797809 min_weight_fraction_leaf : float, optional (default=0.)
798810 The minimum weighted fraction of the input samples required to be at a
799811 leaf node.
@@ -991,6 +1003,9 @@ class RandomForestRegressor(ForestRegressor):
9911003 `ceil(min_samples_split * n_samples)` are the minimum
9921004 number of samples for each split.
9931005
1006+ .. versionchanged:: 0.18
1007+ Added float values for percentages.
1008+
9941009 min_samples_leaf : int, float, optional (default=1)
9951010 The minimum number of samples required to be at a leaf node:
9961011
@@ -999,6 +1014,9 @@ class RandomForestRegressor(ForestRegressor):
9991014 `ceil(min_samples_leaf * n_samples)` are the minimum
10001015 number of samples for each node.
10011016
1017+ .. versionchanged:: 0.18
1018+ Added float values for percentages.
1019+
10021020 min_weight_fraction_leaf : float, optional (default=0.)
10031021 The minimum weighted fraction of the input samples required to be at a
10041022 leaf node.
@@ -1156,6 +1174,9 @@ class ExtraTreesClassifier(ForestClassifier):
11561174 `ceil(min_samples_split * n_samples)` are the minimum
11571175 number of samples for each split.
11581176
1177+ .. versionchanged:: 0.18
1178+ Added float values for percentages.
1179+
11591180 min_samples_leaf : int, float, optional (default=1)
11601181 The minimum number of samples required to be at a leaf node:
11611182
@@ -1164,6 +1185,9 @@ class ExtraTreesClassifier(ForestClassifier):
11641185 `ceil(min_samples_leaf * n_samples)` are the minimum
11651186 number of samples for each node.
11661187
1188+ .. versionchanged:: 0.18
1189+ Added float values for percentages.
1190+
11671191 min_weight_fraction_leaf : float, optional (default=0.)
11681192 The minimum weighted fraction of the input samples required to be at a
11691193 leaf node.
@@ -1360,6 +1384,9 @@ class ExtraTreesRegressor(ForestRegressor):
13601384 `ceil(min_samples_split * n_samples)` are the minimum
13611385 number of samples for each split.
13621386
1387+ .. versionchanged:: 0.18
1388+ Added float values for percentages.
1389+
13631390 min_samples_leaf : int, float, optional (default=1)
13641391 The minimum number of samples required to be at a leaf node:
13651392
@@ -1368,6 +1395,9 @@ class ExtraTreesRegressor(ForestRegressor):
13681395 `ceil(min_samples_leaf * n_samples)` are the minimum
13691396 number of samples for each node.
13701397
1398+ .. versionchanged:: 0.18
1399+ Added float values for percentages.
1400+
13711401 min_weight_fraction_leaf : float, optional (default=0.)
13721402 The minimum weighted fraction of the input samples required to be at a
13731403 leaf node.
@@ -1511,6 +1541,9 @@ class RandomTreesEmbedding(BaseForest):
15111541 `ceil(min_samples_split * n_samples)` is the minimum
15121542 number of samples for each split.
15131543
1544+ .. versionchanged:: 0.18
1545+ Added float values for percentages.
1546+
15141547 min_samples_leaf : int, float, optional (default=1)
15151548 The minimum number of samples required to be at a leaf node:
15161549
@@ -1519,6 +1552,9 @@ class RandomTreesEmbedding(BaseForest):
15191552 `ceil(min_samples_leaf * n_samples)` is the minimum
15201553 number of samples for each node.
15211554
1555+ .. versionchanged:: 0.18
1556+ Added float values for percentages.
1557+
15221558 min_weight_fraction_leaf : float, optional (default=0.)
15231559 The minimum weighted fraction of the input samples required to be at a
15241560 leaf node.
0 commit comments