|
| 1 | +## MACE-Field: Field-Aware MACE Models |
| 2 | + |
| 3 | +**MACE-Field** extends the MACE architecture to learn **electric-field–dependent properties** of molecules and materials. |
| 4 | +In addition to standard **energies, forces, and stresses**, MACE-Field can simultaneously predict |
| 5 | + |
| 6 | +- macroscopic **polarisation**, |
| 7 | +- **Born effective charges (BECs)**, |
| 8 | +- **polarizabilities**, |
| 9 | + |
| 10 | +as explicit functions of an applied **electric field**. |
| 11 | + |
| 12 | +This makes MACE-Field suitable for finite-field simulations, dielectric response, and field-driven molecular dynamics. |
| 13 | + |
| 14 | +--- |
| 15 | + |
| 16 | +## 1. Data format and required labels |
| 17 | + |
| 18 | +MACE-Field is trained from ASE-readable datasets (typically extended XYZ). In addition to the usual structural data, field-aware training requires extra keys. |
| 19 | + |
| 20 | +### 1.1. Required `atoms.info` keys (configuration-level) |
| 21 | + |
| 22 | +- `REF_energy` |
| 23 | + Total DFT energy (eV) |
| 24 | + |
| 25 | +- `REF_stress` *or* `REF_virials` |
| 26 | + Stress / virials tensor (Voigt-6 or 3×3) |
| 27 | + |
| 28 | +- `REF_electric_field` |
| 29 | + Applied electric field vector, shape `(3,)` (V/Å) |
| 30 | + |
| 31 | +- `REF_polarization` |
| 32 | + Macroscopic polarisation vector, shape `(3,)` (typically in e/Ų) |
| 33 | + |
| 34 | +- `REF_polarizability` |
| 35 | + Polarizability tensor, shape `(3,3)` or flattened `(9,)` (in units of ε₀) |
| 36 | + |
| 37 | +- `head` *(optional)* |
| 38 | + Head label, e.g. `"Default"` |
| 39 | + |
| 40 | +### 1.2. Required `atoms.arrays` keys (per-atom) |
| 41 | + |
| 42 | +- `REF_forces` |
| 43 | + Atomic forces, shape `(N, 3)` (eV/Å) |
| 44 | + |
| 45 | +- `REF_becs` |
| 46 | + Born effective charges, shape `(N, 3, 3)` (units of |e|) |
| 47 | + |
| 48 | +Key names can be overridden from the command line, but the above are the recommended defaults. |
| 49 | + |
| 50 | +--- |
| 51 | + |
| 52 | +## 2. Training a MACE-Field model |
| 53 | + |
| 54 | +Training is done via the standard MACE CLI with `--model MACEField` and the `universal_field` loss. |
| 55 | + |
| 56 | +### 2.1. Example training command |
| 57 | + |
| 58 | +```bash |
| 59 | +python -m mace.scripts.run_train \ |
| 60 | + --model MACEField \ |
| 61 | + --name macefield_model \ |
| 62 | + --train_file data/field_train.xyz \ |
| 63 | + --valid_fraction 0.2 \ |
| 64 | + \ |
| 65 | + --device cuda \ |
| 66 | + --default_dtype float32 \ |
| 67 | + \ |
| 68 | + --r_max 5.0 \ |
| 69 | + --num_interactions 2 \ |
| 70 | + --num_channels 128 \ |
| 71 | + --max_L 1 \ |
| 72 | + --correlation 3 \ |
| 73 | + \ |
| 74 | + --loss universal_field \ |
| 75 | + \ |
| 76 | + --energy_key REF_energy \ |
| 77 | + --forces_key REF_forces \ |
| 78 | + --stress_key REF_stress \ |
| 79 | + --virials_key REF_virials \ |
| 80 | + --electric_field_key REF_electric_field \ |
| 81 | + --polarization_key REF_polarization \ |
| 82 | + --becs_key REF_becs \ |
| 83 | + --polarizability_key REF_polarizability \ |
| 84 | + \ |
| 85 | + --energy_weight 1.0 \ |
| 86 | + --forces_weight 100.0 \ |
| 87 | + --stress_weight 1.0 \ |
| 88 | + --polarization_weight 1.0 \ |
| 89 | + --becs_weight 1.0 \ |
| 90 | + --polarizability_weight 1.0 \ |
| 91 | + \ |
| 92 | + --batch_size 8 \ |
| 93 | + --max_num_epochs 50 \ |
| 94 | + --lr 1e-3 |
| 95 | +``` |
| 96 | + |
1 | 97 | # <span style="font-size:larger;">MACE</span> |
2 | 98 |
|
3 | 99 | [](https://GitHub.com/ACEsuit/mace/releases/) |
|
0 commit comments