You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: CNN/cnnsetup.m
+1Lines changed: 1 addition & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -1,4 +1,5 @@
1
1
functionnet= cnnsetup(net, x, y)
2
+
assert(exist('OCTAVE_VERSION')==0, 'CNNs does not work with Octave as there is a bug in the implementation of convolution in octave. See: http://savannah.gnu.org/bugs/?39314');
loss = nneval(nn, loss, train_x, train_y, val_x, val_y);
65
-
else
66
-
loss = nneval(nn, loss, train_x, train_y);
67
-
end
68
70
nnupdatefigures(nn, fhandle, loss, opts, i);
69
71
end
70
72
71
-
disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds''. Mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1))))]);
73
+
disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds''. Mini-batch mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1))))str_perf]);
Copy file name to clipboardExpand all lines: README.md
+16-52Lines changed: 16 additions & 52 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -1,3 +1,4 @@
1
+
1
2
DeepLearnToolbox
2
3
================
3
4
@@ -53,9 +54,12 @@ Setup
53
54
1. Download.
54
55
2. addpath(genpath('DeepLearnToolbox'));
55
56
56
-
Everything is work in progress
57
+
Known errors
57
58
------------------------------
58
59
60
+
`test_cnn_gradients_are_numerically_correct` fails on Octave because of a bug in Octave's convn implementation. See http://savannah.gnu.org/bugs/?39314
61
+
62
+
`test_example_CNN` fails in Octave for the same reason.
59
63
Example: Deep Belief Network
60
64
---------------------
61
65
```matlab
@@ -69,7 +73,7 @@ train_y = double(train_y);
69
73
test_y = double(test_y);
70
74
71
75
%% ex1 train a 100 hidden unit RBM and visualize its weights
0 commit comments