Skip to content

Commit ba9793f

Browse files
committed
_
add: Architectures You’ve Always Wondered About 2025 fix: Data Science (ML/NN) structure
1 parent f9951d0 commit ba9793f

File tree

2 files changed

+79
-55
lines changed

2 files changed

+79
-55
lines changed

README.md

Lines changed: 79 additions & 55 deletions
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@ This mindmap created by `https://app.mindmapmaker.org/`
7171
- [Design Gurus](https://www.designgurus.io/): Portal For Tech Interviews
7272
- [System Design Blueprint: The Ultimate Guide](https://blog.bytebytego.com/p/ep56-system-design-blueprint-the)
7373
---
74-
- [InfoQ minibooks](https://www.infoq.com/minibooks/): Architectures You’ve Always Wondered About .. [2021](./files/minibooks/AYAWA-2021-1635782607730.pdf) / [2023](./files/minibooks/AYAWA-2023-1685636455618.pdf) / [2024](./files/minibooks/AYAWA-2024-1712241257109.pdf) / [Cell-Based Architecture](https://www.infoq.com/minibooks/cell-based-architecture-2024)
74+
- [InfoQ minibooks](https://www.infoq.com/minibooks/): Architectures You’ve Always Wondered About .. [2021](./files/minibooks/AYAWA-2021-1635782607730.pdf) / [2023](./files/minibooks/AYAWA-2023-1685636455618.pdf) / [2024](./files/minibooks/AYAWA-2024-1712241257109.pdf) /[2025](./files/minibooks/AYAWA-2025-1745910098236.pdf) / [Cell-Based Architecture](https://www.infoq.com/minibooks/cell-based-architecture-2024)
7575
- [Building a scalable authorization system](./files/minibooks/Building%20a%20scalable%20authorization%20system_%20a%20step-by-step%20blueprint.pdf)
7676
- [Mastering RAG](./files/minibooks/Mastering%20RAG-compressed.pdf)
7777
- [Mastering AI Agents](./files/minibooks/Mastering%20AI%20Agents-compressed.pdf)
@@ -102,6 +102,7 @@ This mindmap created by `https://app.mindmapmaker.org/`
102102
- [Build frontend applications at scale](https://frontendatscale.com/courses/frontend-architecture/)
103103
- [Writing an Operating System in 1,000 Lines](https://github.com/nuta/operating-system-in-1000-lines): [ref](https://operating-system-in-1000-lines.vercel.app)
104104
- [minimal GPT](https://www.k-a.in/minimalGPT.html)
105+
- [PyTorch internals](https://blog.ezyang.com/2019/05/pytorch-internals/)
105106

106107
### Cloud Architecture
107108

@@ -320,65 +321,88 @@ This mindmap created by `https://app.mindmapmaker.org/`
320321

321322
## Data Science (ML/NN)
322323

323-
### Free e-books
324-
325-
1. [Deep Learning](http://www.deeplearningbook.org/) - Ian Goodfellow, Yoshua Bengio, and Aaron Courville
326-
2. [Mathematics for Machine Learning](https://mml-book.github.io/) - Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
327-
3. [An Introduction to Statistical Learning](https://www.statlearning.com/) - Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor
328-
4. [The Elements of Statistical Learning](https://web.stanford.edu/~hastie/ElemStatLearn/) - Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie
329-
5. [Probabilistic Machine Learning: An Introduction](https://probml.github.io/pml-book/) - Kevin Patrick Murphy
330-
6. [Probabilistic Machine Learning: Advanced Topics](https://probml.github.io/pml-book/) - Kevin Patrick Murphy
331-
7. [Understanding Machine Learning](https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/) - Shai Shalev-Shwartz and Shai Ben-David
332-
8. [Automated Machine Learning](https://www.automl.org/book/) - Frank Hutter, Lars Kotthoff, Joaquin Vanschoren
333-
9. [Applied Causal Inference](https://appliedcausalinference.github.io/aci_book/index.html) - Uday Kamath, Kenneth Graham, Mitchell Naylor
334-
10. [Reinforcement Learning: An Introduction](http://incompleteideas.net/book/the-book-2nd.html) - Richard S. Sutton and Andrew G. Barto
335-
11. [The Hundred-Page Machine Learning Book](http://themlbook.com/) - Andriy Burkov
336-
12. [Machine Learning Engineering](http://www.mlebook.com/wiki/doku.php) - Andriy Burkov
337-
13. [Natural Language Processing with Python](https://www.nltk.org/book/) - Steven Bird, Ewan Klein, and Edward Loper
338-
14. [Dive into Deep Learning](https://d2l.ai/) - Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola
339-
15. [Machine Learning Yearning](https://github.com/ajaymache/machine-learning-yearning) - Andrew NG
340-
16. [Machine Learning for Humans](https://vas3k.com/blog/machine_learning/) - Vishal Maini, Samer Sabri
341-
17. [Pattern Recognition and Machine Learning](https://www.microsoft.com/en-us/research/people/cmbishop/#!prml-book) - Christopher M. Bishop
342-
18. [Deep Learning on Graphs](https://yaoma24.github.io/dlg_book/index.html) - Yao Ma and Jiliang Tang
343-
19. [Approaching (Almost) Any Machine Learning Problem](https://github.com/abhishekkrthakur/approachingalmost) - Abhishek Thakur
344-
20. [Feature Engineering and Selection](https://bookdown.org/max/FES/) - Max Kuhn and Kjell Johnson
345-
21. [Hands-On Machine Learning with R](https://bradleyboehmke.github.io/HOML/) - Bradley Boehmke & Brandon Greenwell
346-
22. [Deep Learning Interviews](https://arxiv.org/abs/2201.00650) - Shlomo Kashani and Amir Ivry
347-
23. [Machine Learning Interpretability](https://www.oreilly.com/library/view/an-introduction-to/9781492033158/) - Patrick Hall and Navdeep Gill
348-
24. [Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/) - Christoph Molnar
349-
25. [Boosting: Foundations and Algorithms](https://direct.mit.edu/books/oa-monograph/5342/BoostingFoundations-and-Algorithms) - Robert E. Schapire, Yoav Freund
350-
26. [A Brief Introduction to Machine Learning for Engineers](https://arxiv.org/abs/1709.02840) - Osvaldo Simeone
351-
27. [Speech and Language Processing](https://web.stanford.edu/~jurafsky/slp3/) - Daniel Jurafsky & James Martin
352-
28. [Computer Vision: Models, Learning, and Inference](https://udlbook.github.io/cvbook/) - Simon J.D. Prince
353-
29. [Information Theory, Inference and Learning Algorithms](http://www.inference.org.uk/mackay/itila/) - David J. C. MacKay
354-
30. [Machine Learning For Dummies](https://www.ibm.com/downloads/cas/GB8ZMQZ3) - Judith Hurwitz and Daniel Kirsch
355-
31. [Algebra, Topology, Differential Calculus, and Optimization Theory for Computer Science and Machine Learning](https://www.cis.upenn.edu/~jean/gbooks/geomath.html)
356-
32. [@mathtalent Lecture Notes](https://skim.math.msstate.edu/LectureNotes/)
357-
33. [Mathematical Methods for Computer Vision, Robotics, and Graphics](http://graphics.stanford.edu/courses/cs205a-13-fall/assets/notes/cs205a_notes.pdf)
358-
34. [Math Foundations for Computer Science](https://web.stanford.edu/class/archive/cs/cs103/cs103.1184/notes/Mathematical%20Foundations%20of%20Computing.pdf)
359-
360-
### Github
361-
324+
### Free eBooks for ML, Data Science & AI > [ref](https://newsletter.theaiedge.io/p/30-free-machine-learning-e-books)
325+
326+
##### Machine Learning & Deep Learning
327+
328+
1. [Deep Learning](http://www.deeplearningbook.org/) – Ian Goodfellow, Yoshua Bengio, Aaron Courville
329+
1. [Dive into Deep Learning](https://d2l.ai/) – Aston Zhang et al.
330+
1. [The Hundred-Page Machine Learning Book](http://themlbook.com/) – Andriy Burkov
331+
1. [Machine Learning Yearning](https://github.com/ajaymache/machine-learning-yearning) – Andrew Ng
332+
1. [Understanding Machine Learning](https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/) – Shai Shalev-Shwartz, Shai Ben-David
333+
1. [Machine Learning for Humans](https://vas3k.com/blog/machine_learning/) – Vishal Maini, Samer Sabri
334+
1. [Approaching (Almost) Any ML Problem](https://github.com/abhishekkrthakur/approachingalmost) – Abhishek Thakur
335+
1. [Machine Learning For Dummies](https://www.ibm.com/downloads/cas/GB8ZMQZ3) – Judith Hurwitz, Daniel Kirsch
336+
1. [Hands-On Machine Learning with R](https://bradleyboehmke.github.io/HOML/) – Boehmke & Greenwell
337+
1. [Machine Learning Engineering](http://www.mlebook.com/wiki/doku.php) – Andriy Burkov
338+
339+
##### Mathematics & Statistical Foundations
340+
341+
1. [Mathematics for Machine Learning](https://mml-book.github.io/) – Deisenroth, Faisal, Ong
342+
1. [The Elements of Statistical Learning](https://web.stanford.edu/~hastie/ElemStatLearn/) – Friedman, Tibshirani, Hastie
343+
1. [An Introduction to Statistical Learning](https://www.statlearning.com/) – James et al.
344+
1. [Pattern Recognition and ML](https://www.microsoft.com/en-us/research/people/cmbishop/#!prml-book) – Christopher Bishop
345+
1. [Information Theory, Inference, and Learning Algorithms](http://www.inference.org.uk/mackay/itila/) – David J. C. MacKay
346+
1. [Algebra, Topology, Calculus & Optimization for CS/ML](https://www.cis.upenn.edu/~jean/gbooks/geomath.html) – Jean Gallier
347+
1. [Mathematical Methods for CV, Robotics, Graphics](http://graphics.stanford.edu/courses/cs205a-13-fall/assets/notes/cs205a_notes.pdf) – Stanford
348+
1. [Math Foundations for Computer Science](https://web.stanford.edu/class/archive/cs/cs103/cs103.1184/notes/Mathematical%20Foundations%20of%20Computing.pdf) – Stanford CS103
349+
1. [@mathtalent Lecture Notes](https://skim.math.msstate.edu/LectureNotes/) – Math-focused CS notes
350+
1. [Algorithms for Artificial Intelligence](https://web.stanford.edu/~mossr/pdf/alg4ai.pdf) – Moss
351+
352+
##### Probabilistic, Special Topics
353+
354+
1. [Probabilistic ML: An Introduction](https://probml.github.io/pml-book/) – Kevin P. Murphy
355+
1. [Probabilistic ML: Advanced Topics](https://probml.github.io/pml-book/) – Kevin P. Murphy
356+
1. [Applied Causal Inference](https://appliedcausalinference.github.io/aci_book/index.html) – Uday Kamath et al.
357+
1. [Reinforcement Learning: An Introduction](http://incompleteideas.net/book/the-book-2nd.html) – Sutton & Barto
358+
1. [Deep Learning on Graphs](https://yaoma24.github.io/dlg_book/index.html) – Yao Ma & Jiliang Tang
359+
1. [Speech and Language Processing](https://web.stanford.edu/~jurafsky/slp3/) – Jurafsky & Martin
360+
1. [Natural Language Processing with Python](https://www.nltk.org/book/) – Bird, Klein, Loper
361+
1. [Computer Vision: Models, Learning, and Inference](https://udlbook.github.io/cvbook/) – Simon J.D. Prince
362+
1. [Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/) – Christoph Molnar
363+
1. [ML Interpretability](https://www.oreilly.com/library/view/an-introduction-to/9781492033158/) – Patrick Hall & Navdeep Gill
364+
1. [Automated Machine Learning](https://www.automl.org/book/) – Frank Hutter et al.
365+
1. [Feature Engineering and Selection](https://bookdown.org/max/FES/) – Max Kuhn & Kjell Johnson
366+
1. [Deep Learning Interviews](https://arxiv.org/abs/2201.00650) – Shlomo Kashani, Amir Ivry
367+
1. [Boosting: Foundations and Algorithms](https://direct.mit.edu/books/oa-monograph/5342/BoostingFoundations-and-Algorithms) – Schapire & Freund
368+
1. [A Brief Introduction to ML for Engineers](https://arxiv.org/abs/1709.02840) – Osvaldo Simeone
369+
370+
### Github:
371+
372+
##### Foundational Learning
373+
374+
1. [Machine Learning for Beginners – Microsoft](https://github.com/microsoft/ML-For-Beginners)
362375
1. [The Data Engineering Handbook](https://github.com/DataExpert-io/data-engineer-handbook)
363-
1. [Machine Learning for Beginners](https://github.com/microsoft/ML-For-Beginners)
364-
1. [Machine Learning YouTube Videos](https://github.com/ujjwalkarn/Machine-Learning-Videos)
376+
1. [Virgilio – Data Science Curriculum](https://github.com/virgili0/Virgilio)
377+
1. [Open Source Data Science Masters](https://github.com/datasciencemasters/go)
378+
1. [Python Data Science Handbook](https://github.com/jakevdp/PythonDataScienceHandbook)
379+
1. [Data Science Python Notebooks](https://github.com/donnemartin/data-science-ipython-notebooks)
380+
1. [Awesome Data Science](https://github.com/academic/awesome-datascience)
381+
1. [Awesome Machine Learning](https://github.com/josephmisiti/awesome-machine-learning)
382+
383+
##### Deep Learning & Math
384+
385+
1. [Deep Learning Book (MIT)](https://github.com/janishar/mit-deep-learning-book-pdf)
386+
1. [fastai Book (fastbook)](https://github.com/fastai/fastbook)
365387
1. [Mathematics for Machine Learning](https://github.com/mml-book/mml-book.github.io)
366-
1. [Deep Learning Book](https://github.com/janishar/mit-deep-learning-book-pdf)
367-
1. [Machine Learning ZoomCamp](https://github.com/alexeygrigorev/mlbookcamp-code)
388+
1. [labml.ai – Deep Learning Paper Implementations](https://github.com/labmlai/annotated_deep_learning_paper_implementations)
389+
1. [Deep Learning Models by Rasbt](https://github.com/rasbt/deeplearning-models)
390+
391+
##### Practical Skills & Production
392+
368393
1. [Machine Learning Tutorials](https://github.com/ujjwalkarn/Machine-Learning-Tutorials)
369-
1. [Awesome Machine Learning](https://github.com/josephmisiti/awesome-machine-learning)
370-
1. [CS 229 Machine Learning Cheatsheets](https://github.com/afshinea/stanford-cs-229-machine-learning)
371-
1. [Machine Learning Interview Guide](https://github.com/Sroy20/machine-learning-interview-guide)
394+
1. [Machine Learning ZoomCamp](https://github.com/alexeygrigorev/mlbookcamp-code)
395+
1. [Applied ML – Papers & Blogs](https://github.com/eugeneyan/applied-ml)
372396
1. [Awesome Production Machine Learning](https://github.com/EthicalML/awesome-production-machine-learning)
397+
1. [Data Science Project Template (Cookiecutter)](https://github.com/drivendataorg/cookiecutter-data-science)
373398
1. [365 Data Science Flashcards](https://365datascience.com/flashcards/)
374-
1. [ref](https://www.kdnuggets.com/10-github-repositories-to-master-machine-learning?utm_source=rss&utm_medium=rss&utm_campaign=10-github-repositories-to-master-machine-learning) > [Virgilio](https://github.com/virgili0/Virgilio) | [Python Data Science Handbook](https://github.com/jakevdp/PythonDataScienceHandbook) | [Microsoft: 10 Weeks, 20 Lessons, Data Science](https://github.com/microsoft/Data-Science-For-Beginners) | [Data science Python notebooks](https://github.com/donnemartin/data-science-ipython-notebooks) | [📚 Papers & tech blog](https://github.com/eugeneyan/applied-ml) | [Open Source Data Science Masters](https://github.com/datasciencemasters/go) | [Awesome Data Science](https://github.com/academic/awesome-datascience) | [Data science interview questions and answers](https://github.com/alexeygrigorev/data-science-interviews) | [free self-taught education in Data Science!](https://github.com/ossu/data-science)
375-
1. [data science project template](https://github.com/drivendataorg/cookiecutter-data-science)
376-
1. [labml.ai Deep Learning Paper Implementations](https://github.com/labmlai/annotated_deep_learning_paper_implementations): 60+ Implementations/tutorials of deep learning papers with side-by-side notes
377-
1. [Deep Learning Models](https://github.com/rasbt/deeplearning-models): A collection of various deep learning architectures, models, and tips
378-
1. [fastai book](https://github.com/fastai/fastbook): The fastai book, published as Jupyter Notebooks
379-
1. [openpilot](https://github.com/commaai/openpilot): an open source driver assistance system
380-
381-
- [ref](https://newsletter.theaiedge.io/p/30-free-machine-learning-e-books)
399+
1. [openpilot – Driver Assistance System](https://github.com/commaai/openpilot)
400+
401+
##### Interviews & Cheatsheets
402+
403+
1. [CS 229 ML Cheatsheets](https://github.com/afshinea/stanford-cs-229-machine-learning)
404+
1. [ML Interview Guide](https://github.com/Sroy20/machine-learning-interview-guide)
405+
1. [Data Science Interview Q\&A](https://github.com/alexeygrigorev/data-science-interviews)
382406

383407
## Terminology and Comparisons
384408

6.56 MB
Binary file not shown.

0 commit comments

Comments
 (0)