You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
-[Mastering AI Agents](./files/minibooks/Mastering%20AI%20Agents-compressed.pdf)
@@ -102,6 +102,7 @@ This mindmap created by `https://app.mindmapmaker.org/`
102
102
-[Build frontend applications at scale](https://frontendatscale.com/courses/frontend-architecture/)
103
103
-[Writing an Operating System in 1,000 Lines](https://github.com/nuta/operating-system-in-1000-lines): [ref](https://operating-system-in-1000-lines.vercel.app)
@@ -320,65 +321,88 @@ This mindmap created by `https://app.mindmapmaker.org/`
320
321
321
322
## Data Science (ML/NN)
322
323
323
-
### Free e-books
324
-
325
-
1.[Deep Learning](http://www.deeplearningbook.org/) - Ian Goodfellow, Yoshua Bengio, and Aaron Courville
326
-
2.[Mathematics for Machine Learning](https://mml-book.github.io/) - Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
327
-
3.[An Introduction to Statistical Learning](https://www.statlearning.com/) - Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor
328
-
4.[The Elements of Statistical Learning](https://web.stanford.edu/~hastie/ElemStatLearn/) - Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie
329
-
5.[Probabilistic Machine Learning: An Introduction](https://probml.github.io/pml-book/) - Kevin Patrick Murphy
330
-
6.[Probabilistic Machine Learning: Advanced Topics](https://probml.github.io/pml-book/) - Kevin Patrick Murphy
331
-
7.[Understanding Machine Learning](https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/) - Shai Shalev-Shwartz and Shai Ben-David
332
-
8.[Automated Machine Learning](https://www.automl.org/book/) - Frank Hutter, Lars Kotthoff, Joaquin Vanschoren
22.[Deep Learning Interviews](https://arxiv.org/abs/2201.00650) - Shlomo Kashani and Amir Ivry
347
-
23.[Machine Learning Interpretability](https://www.oreilly.com/library/view/an-introduction-to/9781492033158/) - Patrick Hall and Navdeep Gill
348
-
24.[Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/) - Christoph Molnar
349
-
25.[Boosting: Foundations and Algorithms](https://direct.mit.edu/books/oa-monograph/5342/BoostingFoundations-and-Algorithms) - Robert E. Schapire, Yoav Freund
350
-
26.[A Brief Introduction to Machine Learning for Engineers](https://arxiv.org/abs/1709.02840) - Osvaldo Simeone
351
-
27.[Speech and Language Processing](https://web.stanford.edu/~jurafsky/slp3/) - Daniel Jurafsky & James Martin
352
-
28.[Computer Vision: Models, Learning, and Inference](https://udlbook.github.io/cvbook/) - Simon J.D. Prince
353
-
29.[Information Theory, Inference and Learning Algorithms](http://www.inference.org.uk/mackay/itila/) - David J. C. MacKay
354
-
30.[Machine Learning For Dummies](https://www.ibm.com/downloads/cas/GB8ZMQZ3) - Judith Hurwitz and Daniel Kirsch
355
-
31.[Algebra, Topology, Differential Calculus, and Optimization Theory for Computer Science and Machine Learning](https://www.cis.upenn.edu/~jean/gbooks/geomath.html)
33.[Mathematical Methods for Computer Vision, Robotics, and Graphics](http://graphics.stanford.edu/courses/cs205a-13-fall/assets/notes/cs205a_notes.pdf)
358
-
34.[Math Foundations for Computer Science](https://web.stanford.edu/class/archive/cs/cs103/cs103.1184/notes/Mathematical%20Foundations%20of%20Computing.pdf)
359
-
360
-
### Github
361
-
324
+
### Free eBooks for ML, Data Science & AI > [ref](https://newsletter.theaiedge.io/p/30-free-machine-learning-e-books)
325
+
326
+
##### Machine Learning & Deep Learning
327
+
328
+
1.[Deep Learning](http://www.deeplearningbook.org/) – Ian Goodfellow, Yoshua Bengio, Aaron Courville
329
+
1.[Dive into Deep Learning](https://d2l.ai/) – Aston Zhang et al.
1.[labml.ai Deep Learning Paper Implementations](https://github.com/labmlai/annotated_deep_learning_paper_implementations): 60+ Implementations/tutorials of deep learning papers with side-by-side notes
377
-
1.[Deep Learning Models](https://github.com/rasbt/deeplearning-models): A collection of various deep learning architectures, models, and tips
378
-
1.[fastai book](https://github.com/fastai/fastbook): The fastai book, published as Jupyter Notebooks
379
-
1.[openpilot](https://github.com/commaai/openpilot): an open source driver assistance system
0 commit comments