|
313 | 313 | "accuracy_score", "unnormalized_accuracy_score", |
314 | 314 | "zero_one_loss", "unnormalized_zero_one_loss", |
315 | 315 |
|
316 | | - "precision_score", "weighted_precision_score", |
317 | | - |
318 | | - "average_precision_score", "weighted_average_precision_score", |
319 | | - |
| 316 | + "precision_score", "average_precision_score", |
320 | 317 | "f1_score", "f2_score", "f0.5_score", |
321 | | - "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", |
| 318 | + "recall_score", "roc_auc_score", |
322 | 319 |
|
323 | | - "recall_score", "weighted_recall_score", |
324 | | - |
325 | | - "roc_auc_score", "weighted_roc_auc", |
| 320 | + "weighted_precision_score", |
| 321 | + "weighted_average_precision_score", |
| 322 | + "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", |
| 323 | + "weighted_recall_score", "weighted_roc_auc", |
326 | 324 |
|
327 | 325 | "explained_variance_score", |
328 | 326 | "mean_squared_error", |
|
335 | 333 | "accuracy_score", "unnormalized_accuracy_score", |
336 | 334 | "zero_one_loss", "unnormalized_zero_one_loss", |
337 | 335 |
|
338 | | - "precision_score", "weighted_precision_score", |
339 | | - |
| 336 | + "precision_score", "recall_score", |
340 | 337 | "f1_score", "f2_score", "f0.5_score", |
341 | | - "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", |
342 | 338 |
|
343 | | - "recall_score", "weighted_recall_score", |
| 339 | + "weighted_precision_score", "weighted_recall_score", |
| 340 | + "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", |
344 | 341 |
|
345 | 342 | "micro_f0.5_score", "micro_f1_score", "micro_f2_score", |
346 | 343 | "micro_precision_score", "micro_recall_score", |
|
357 | 354 | "weighted_average_precision_score", |
358 | 355 | "micro_average_precision_score", |
359 | 356 | "macro_average_precision_score", |
360 | | - #"samples_average_precision_score", |
361 | | - #"samples_roc_auc", |
| 357 | + "samples_average_precision_score", |
| 358 | + "roc_auc_score", |
362 | 359 | "micro_roc_auc", |
| 360 | + "macro_roc_auc", |
| 361 | + "samples_roc_auc", |
363 | 362 | ] |
364 | 363 |
|
365 | 364 | # Regression metrics that support multioutput and weighted samples |
@@ -2657,11 +2656,11 @@ def test_sample_weight_invariance(): |
2657 | 2656 |
|
2658 | 2657 | # multilabel indicator |
2659 | 2658 | _, y1 = make_multilabel_classification( |
2660 | | - n_features=1, n_classes=3, |
| 2659 | + n_features=1, n_classes=6, |
2661 | 2660 | random_state=0, n_samples=10, |
2662 | 2661 | return_indicator=True) |
2663 | 2662 | _, y2 = make_multilabel_classification( |
2664 | | - n_features=1, n_classes=3, |
| 2663 | + n_features=1, n_classes=6, |
2665 | 2664 | random_state=1, n_samples=10, |
2666 | 2665 | return_indicator=True) |
2667 | 2666 | for name in MULTILABEL_INDICATOR_METRICS_WITH_SAMPLE_WEIGHT: |
|
0 commit comments