@@ -338,6 +338,11 @@ class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin):
338338 The function to measure the quality of a split. Supported criteria are
339339 "gini" for the Gini impurity and "entropy" for the information gain.
340340
341+ splitter : string, optional (default="best")
342+ The strategy used to choose the split at each node. Supported
343+ strategies are "best" to choose the best split and "random" to choose
344+ the best random split.
345+
341346 max_features : int, float, string or None, optional (default=None)
342347 The number of features to consider when looking for the best split:
343348 - If int, then consider `max_features` features at each split.
@@ -532,6 +537,11 @@ class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin):
532537 The function to measure the quality of a split. The only supported
533538 criterion is "mse" for the mean squared error.
534539
540+ splitter : string, optional (default="best")
541+ The strategy used to choose the split at each node. Supported
542+ strategies are "best" to choose the best split and "random" to choose
543+ the best random split.
544+
535545 max_features : int, float, string or None, optional (default=None)
536546 The number of features to consider when looking for the best split:
537547 - If int, then consider `max_features` features at each split.
0 commit comments