Skip to content

Commit a63da37

Browse files
committed
Fixed style errors detected by pep8.
1 parent e4f9b5b commit a63da37

File tree

2 files changed

+16
-15
lines changed

2 files changed

+16
-15
lines changed

examples/plot_learning_curve.py

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -24,8 +24,8 @@
2424
from sklearn.learning_curve import learning_curve
2525

2626

27-
def plot_learning_curve(estimator, title, X, y, ylim=(0.7,1.01), cv=None,
28-
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
27+
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
28+
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
2929
"""
3030
Generate a simple plot of the test and traning learning curve.
3131
@@ -46,8 +46,7 @@ def plot_learning_curve(estimator, title, X, y, ylim=(0.7,1.01), cv=None,
4646
None for unsupervised learning.
4747
4848
ylim : tuple, shape (ymin, ymax), optional
49-
Defines minimum and maximum yvalues plotted. Defaults to (0.7, 1.01)
50-
for easy comparison of plots.
49+
Defines minimum and maximum yvalues plotted.
5150
5251
cv : integer, cross-validation generator, optional
5352
If an integer is passed, it is the number of folds (defaults to 3).
@@ -59,7 +58,8 @@ def plot_learning_curve(estimator, title, X, y, ylim=(0.7,1.01), cv=None,
5958
"""
6059
plt.figure()
6160
plt.title(title)
62-
plt.ylim( *ylim )
61+
if ylim is not None:
62+
plt.ylim(*ylim)
6363
plt.xlabel("Training examples")
6464
plt.ylabel("Score")
6565
train_sizes, train_scores, test_scores = learning_curve(
@@ -71,7 +71,8 @@ def plot_learning_curve(estimator, title, X, y, ylim=(0.7,1.01), cv=None,
7171
plt.grid()
7272

7373
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
74-
train_scores_mean + train_scores_std, alpha=0.1, color="r")
74+
train_scores_mean + train_scores_std, alpha=0.1,
75+
color="r")
7576
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
7677
test_scores_mean + test_scores_std, alpha=0.1, color="g")
7778
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
@@ -87,20 +88,20 @@ def plot_learning_curve(estimator, title, X, y, ylim=(0.7,1.01), cv=None,
8788
X, y = digits.data, digits.target
8889

8990

90-
title="Learning Curve (Naive Bayes)"
91-
# Cross validation with 100 iterations to get smoother mean test and train
92-
# score curves, each time with 20% data randomly selected as the validation set.
91+
title = "Learning Curve (Naive Bayes)"
92+
# Cross validation with 100 iterations to get smoother mean test and train
93+
# score curves, each time with 20% data randomly selected as a validation set.
9394
cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=100,
9495
test_size=0.2, random_state=0)
9596

96-
estimator=GaussianNB()
97-
plot_learning_curve(estimator, title, X, y, cv=cv, n_jobs=4)
97+
estimator = GaussianNB()
98+
plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4)
9899

99-
title="Learning Curve (SVM, RBF kernel, $\gamma=0.001$)"
100+
title = "Learning Curve (SVM, RBF kernel, $\gamma=0.001$)"
100101
# SVC is more expensive so we do a lower number of CV iterations:
101102
cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=10,
102103
test_size=0.2, random_state=0)
103-
estimator=SVC(gamma=0.001)
104-
plot_learning_curve(estimator, title, X, y, cv=cv, n_jobs=4)
104+
estimator = SVC(gamma=0.001)
105+
plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4)
105106

106107
plt.show()

sklearn/learning_curve.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -292,7 +292,7 @@ def validation_curve(estimator, X, y, param_name, param_range, cv=None,
292292
verbose=verbose)
293293
out = parallel(delayed(_fit_and_score)(
294294
estimator, X, y, scorer, train, test, verbose,
295-
parameters={param_name : v}, fit_params=None, return_train_score=True)
295+
parameters={param_name: v}, fit_params=None, return_train_score=True)
296296
for train, test in cv for v in param_range)
297297

298298
out = np.asarray(out)[:, :2]

0 commit comments

Comments
 (0)