@@ -420,12 +420,6 @@ class RobustScaler(BaseEstimator, TransformerMixin):
420420
421421 Parameters
422422 ----------
423- interquartile_scale : float or string in ["normal" (default), ],
424- The interquartile range is divided by this factor. If
425- `interquartile_scale` is "normal", the data is scaled so it
426- approximately reaches unit variance. This convergence assumes
427- Gaussian input data and will need a large number of samples.
428-
429423 with_centering : boolean, True by default
430424 If True, center the data before scaling.
431425 This does not work (and will raise an exception) when attempted on
@@ -467,9 +461,7 @@ class RobustScaler(BaseEstimator, TransformerMixin):
467461 http://en.wikipedia.org/wiki/Interquartile_range
468462 """
469463
470- def __init__ (self , interquartile_scale = "normal" , with_centering = True ,
471- with_scaling = True , copy = True ):
472- self .interquartile_scale = interquartile_scale
464+ def __init__ (self , with_centering = True , with_scaling = True , copy = True ):
473465 self .with_centering = with_centering
474466 self .with_scaling = with_scaling
475467 self .copy = copy
@@ -510,21 +502,13 @@ def fit(self, X, y=None):
510502 if sparse .issparse (X ):
511503 raise TypeError ("RobustScaler cannot be fitted on sparse inputs" )
512504
513- if not np .isreal (self .interquartile_scale ):
514- if self .interquartile_scale != "normal" :
515- raise ValueError ("Unknown interquartile_scale value." )
516- else :
517- iqr_scale = 1.34898
518- else :
519- iqr_scale = self .interquartile_scale
520-
521505 X = self ._check_array (X , self .copy )
522506 if self .with_centering :
523507 self .center_ = np .median (X , axis = 0 )
524508
525509 if self .with_scaling :
526510 q = np .percentile (X , (25 , 75 ), axis = 0 )
527- self .scale_ = (q [1 ] - q [0 ]) / iqr_scale
511+ self .scale_ = (q [1 ] - q [0 ])
528512 if np .isscalar (self .scale_ ):
529513 if self .scale_ == 0 :
530514 self .scale_ = 1.
0 commit comments