@@ -410,10 +410,10 @@ def __init__(self, y, n_folds=3, indices=None, shuffle=False,
410410 min_labels = np .min (label_counts )
411411 if self .n_folds > min_labels :
412412 warnings .warn (("The least populated class in y has only %d"
413- " members, which is too few. The minimum"
414- " number of labels for any class cannot"
415- " be less than n_folds=%d."
416- % (min_labels , self .n_folds )), Warning )
413+ " members, which is too few. The minimum"
414+ " number of labels for any class cannot"
415+ " be less than n_folds=%d."
416+ % (min_labels , self .n_folds )), Warning )
417417
418418 # don't want to use the same seed in each label's shuffle
419419 if self .shuffle :
@@ -1250,7 +1250,7 @@ def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params):
12501250 # Adjust length of sample weights
12511251 fit_params = fit_params if fit_params is not None else {}
12521252 fit_params = dict ([(k , _index_param_value (X , v , train ))
1253- for k , v in fit_params .items ()])
1253+ for k , v in fit_params .items ()])
12541254
12551255 X_train , y_train = _safe_split (estimator , X , y , train )
12561256 X_test , _ = _safe_split (estimator , X , y , test , train )
@@ -1441,7 +1441,7 @@ def _fit_and_score(estimator, X, y, scorer, train, test, verbose,
14411441 # Adjust length of sample weights
14421442 fit_params = fit_params if fit_params is not None else {}
14431443 fit_params = dict ([(k , _index_param_value (X , v , train ))
1444- for k , v in fit_params .items ()])
1444+ for k , v in fit_params .items ()])
14451445
14461446 if parameters is not None :
14471447 estimator .set_params (** parameters )
@@ -1798,7 +1798,8 @@ def train_test_split(*arrays, **options):
17981798 "assumed True in 0.18 and removed." , DeprecationWarning )
17991799 if allow_lists is False or allow_nd is False :
18001800 arrays = [check_array (x , 'csr' , allow_nd = allow_nd ,
1801- force_all_finite = False , ensure_2d = False ) if x is not None else x
1801+ force_all_finite = False , ensure_2d = False )
1802+ if x is not None else x
18021803 for x in arrays ]
18031804
18041805 if test_size is None and train_size is None :
0 commit comments