@@ -144,7 +144,7 @@ efficiently process ``scipy.sparse`` data.
144144
145145- :func: `sparsefuncs.inplace_csr_row_normalize_l1 ` and
146146 :func: `sparsefuncs.inplace_csr_row_normalize_l2 `: can be used to normalize
147- individual sparse samples to unit l1 or l2 norm as done in
147+ individual sparse samples to unit L1 or L2 norm as done in
148148 :class: `sklearn.preprocessing.Normalizer `.
149149
150150- :func: `sparsefuncs.inplace_csr_column_scale `: can be used to multiply the
@@ -159,7 +159,8 @@ Graph Routines
159159- :func: `graph.single_source_shortest_path_length `:
160160 (not currently used in scikit-learn)
161161 Return the shortest path from a single source
162- to all connected nodes on a graph. Code is adapted from networkx.
162+ to all connected nodes on a graph. Code is adapted from `networkx
163+ <https://networkx.github.io/> `_.
163164 If this is ever needed again, it would be far faster to use a single
164165 iteration of Dijkstra's algorithm from ``graph_shortest_path ``.
165166
@@ -169,7 +170,7 @@ Graph Routines
169170 both dense and sparse connectivity matrices.
170171
171172- :func: `graph_shortest_path.graph_shortest_path `:
172- (used in :class: `` sklearn.manifold.Isomap` `)
173+ (used in :class: `sklearn.manifold.Isomap `)
173174 Return the shortest path between all pairs of connected points on a directed
174175 or undirected graph. Both the Floyd-Warshall algorithm and Dijkstra's
175176 algorithm are available. The algorithm is most efficient when the
@@ -235,7 +236,7 @@ Testing Functions
235236 requests to mldata.org. Used in tests of :mod: `sklearn.datasets `.
236237
237238- :func: `testing.all_estimators ` : returns a list of all estimators in
238- sklearn to test for consistent behavior and interfaces.
239+ scikit-learn to test for consistent behavior and interfaces.
239240
240241Multiclass and multilabel utility function
241242==========================================
0 commit comments