@@ -772,8 +772,8 @@ function for more information see the :ref:`clustering_evaluation` section.
772772
773773.. currentmodule :: sklearn
774774
775- Flexible Scoring Objects
776- ========================
775+ ` Scoring ` objects: defining your scoring rules
776+ ===============================================
777777While the above functions provide a simple interface for most use-cases, they
778778can not directly be used for model selection and evaluation using
779779:class: `grid_search.GridSearchCV ` and
@@ -790,35 +790,36 @@ them), you can simply provide a string as the ``scoring`` parameter. Possible
790790values are:
791791
792792
793- =================== =========================================
793+ =================== ===============================================
794794Scoring Function
795- =================== =========================================
795+ =================== ===============================================
796796**Classification **
797- 'accuracy' sklearn.metrics.accuracy_score
798- 'average_precision' sklearn.metrics.average_precision_score
799- 'f1' sklearn.metrics.f1_score
800- 'precision' sklearn.metrics.precision_score
801- 'recall' sklearn.metrics.recall_score
802- 'roc_auc' sklearn.merrics .auc_score
797+ 'accuracy' :func: ` sklearn.metrics.accuracy_score `
798+ 'average_precision' :func: ` sklearn.metrics.average_precision_score `
799+ 'f1' :func: ` sklearn.metrics.f1_score `
800+ 'precision' :func: ` sklearn.metrics.precision_score `
801+ 'recall' :func: ` sklearn.metrics.recall_score `
802+ 'roc_auc' :func: ` sklearn.metrics .auc_score `
803803
804804**Clustering**
805- 'ari'` sklearn.metrics.adjusted_rand_score
805+ 'ari'` :func: ` sklearn.metrics.adjusted_rand_score `
806806
807807**Regression**
808- 'mse' sklearn.metrics.mean_squared_error
809- 'r2' sklearn.metrics.r2_score
810- =================== =========================================
808+ 'mse' :func: ` sklearn.metrics.mean_squared_error `
809+ 'r2' :func: ` sklearn.metrics.r2_score `
810+ =================== ===============================================
811811
812812.. currentmodule :: sklearn.metrics
813813
814- Creating Scoring Objects From Score Functions
814+ Creating scoring objects from score functions
815815---------------------------------------------
816816If you want to use a scoring function that takes additional parameters, such as
817817:func: `fbeta_score `, you need to generate an appropriate scoring object. The
818818simplest way to generate a callable object for scoring is by using
819819:class: `Scorer `.
820820:class: `Scorer ` converts score functions as above into callables
821821that can be used for model evaluation.
822+
822823One typical use case is to wrap an existing scoring function from the library
823824with non default value for its parameters such as the beta parameter for the
824825:func:fbeta_score function::
@@ -846,7 +847,7 @@ predictions as input (``needs_threshold=False``) or needs confidence scores
846847in the example above.
847848
848849
849- Implementing Your Own Scoring Object
850+ Implementing your own scoring object
850851------------------------------------
851852You can generate even more flexible model scores by constructing your own
852853scoring object from scratch, without using the :class: `Scorer ` helper class.
0 commit comments