@@ -553,8 +553,8 @@ def _init_centroids(X, k, init, random_state=None, x_squared_norms=None,
553553
554554 if len (centers ) != k :
555555 raise ValueError ('The shape of the inital centers (%s) '
556- 'does not match the number of clusters %i'
557- % (centers .shape , k ))
556+ 'does not match the number of clusters %i'
557+ % (centers .shape , k ))
558558
559559 return centers
560560
@@ -845,7 +845,7 @@ def _mini_batch_step(X, x_squared_norms, centers, counts,
845845 random_state = check_random_state (random_state )
846846 # Reassign clusters that have very low counts
847847 to_reassign = np .logical_or ((counts <= 1 ),
848- counts <= .001 * counts .max ())
848+ counts <= .001 * counts .max ())
849849 # Pick new clusters amongst observations with a probability
850850 # proportional to their closeness to their center
851851 distance_to_centers = np .asarray (centers [nearest_center ] - X )
@@ -861,7 +861,6 @@ def _mini_batch_step(X, x_squared_norms, centers, counts,
861861 new_centers = X [new_centers ]
862862 centers [to_reassign ] = new_centers
863863
864-
865864 # implementation for the sparse CSR reprensation completely written in
866865 # cython
867866 if sp .issparse (X ):
@@ -1175,8 +1174,8 @@ def fit(self, X, y=None):
11751174 self .cluster_centers_ , self .counts_ ,
11761175 old_center_buffer , tol > 0.0 , distances = distances ,
11771176 random_reassign = (iteration_idx + 1 ) % (10 +
1178- self .counts_ .min ()) == 0 ,
1179- random_state = self .random_state )
1177+ self .counts_ .min ()) == 0 ,
1178+ random_state = self .random_state )
11801179
11811180 # Monitor convergence and do early stopping if necessary
11821181 if _mini_batch_convergence (
@@ -1226,7 +1225,7 @@ def partial_fit(self, X, y=None):
12261225 # The lower the minimum count is, the more we do random
12271226 # reassignement, however, we don't want to do random
12281227 # reassignement to often, to allow for building up counts
1229- random_reassign = self .random_state .randint (10 * (1 +
1228+ random_reassign = self .random_state .randint (10 * (1 +
12301229 self .counts_ .min ())) == 0
12311230
12321231 _mini_batch_step (X , x_squared_norms , self .cluster_centers_ ,
0 commit comments