@@ -63,24 +63,24 @@ unbalanced classification, the accuracy score is often non-informative). An alte
6363can be specified via the ``scoring `` parameter to :class: `GridSearchCV `. There are several built-in scores available,
6464that can be selected by giving a string argument:
6565
66- =================== =========================================
66+ =================== ===============================================
6767Scoring Function
68- =================== =========================================
68+ =================== ===============================================
6969**Classification **
70- 'accuracy' sklearn.metrics.accuracy_score
71- 'average_precision' sklearn.metrics.average_precision_score
72- 'f1' sklearn.metrics.f1_score
73- 'precision' sklearn.metrics.precision_score
74- 'recall' sklearn.metrics.recall_score
75- 'roc_auc' sklearn.merrics .auc_score
70+ 'accuracy' :func: ` sklearn.metrics.accuracy_score `
71+ 'average_precision' :func: ` sklearn.metrics.average_precision_score `
72+ 'f1' :func: ` sklearn.metrics.f1_score `
73+ 'precision' :func: ` sklearn.metrics.precision_score `
74+ 'recall' :func: ` sklearn.metrics.recall_score `
75+ 'roc_auc' :func: ` sklearn.metrics .auc_score `
7676
7777**Clustering**
78- 'ari'` sklearn.metrics.adjusted_rand_score
78+ 'ari'` :func: ` sklearn.metrics.adjusted_rand_score `
7979
8080**Regression**
81- 'mse' sklearn.metrics.mean_squared_error
82- 'r2' sklearn.metrics.r2_score
83- =================== =========================================
81+ 'mse' :func: ` sklearn.metrics.mean_squared_error `
82+ 'r2' :func: ` sklearn.metrics.r2_score `
83+ =================== ===============================================
8484
8585Custom scoring functions can be specified by passing any callable that can be called by :class: `GridSearchCV ` as
8686``scoring(estimator, X, y) ``. See :ref: `score_func_objects ` for more details.
0 commit comments