@@ -162,7 +162,7 @@ Example of 2-fold::
162162 sklearn.cross_validation.KFold(n=4, n_folds=2)
163163
164164 >>> for train, test in kf:
165- ... print(train, test)
165+ ... print("%s %s" % ( train, test) )
166166 [False False True True] [ True True False False]
167167 [ True True False False] [False False True True]
168168
@@ -181,7 +181,7 @@ when creating the cross-validation procedure::
181181
182182 >>> kf = KFold(len(Y), n_folds=2, indices=True)
183183 >>> for train, test in kf:
184- ... print(train, test)
184+ ... print("%s %s" % ( train, test) )
185185 [2 3] [0 1]
186186 [0 1] [2 3]
187187
@@ -210,7 +210,7 @@ Example of stratified 2-fold::
210210 sklearn.cross_validation.StratifiedKFold(labels=[0 0 0 1 1 1 0], n_folds=2)
211211
212212 >>> for train, test in skf:
213- ... print(train, test)
213+ ... print("%s %s" % ( train, test) )
214214 [1 4 6] [0 2 3 5]
215215 [0 2 3 5] [1 4 6]
216216
@@ -233,7 +233,7 @@ not waste much data as only one sample is removed from the learning set::
233233 sklearn.cross_validation.LeaveOneOut(n=4)
234234
235235 >>> for train, test in loo:
236- ... print(train, test)
236+ ... print("%s %s" % ( train, test) )
237237 [1 2 3] [0]
238238 [0 2 3] [1]
239239 [0 1 3] [2]
@@ -257,7 +257,7 @@ Example of Leave-2-Out::
257257 sklearn.cross_validation.LeavePOut(n=4, p=2)
258258
259259 >>> for train, test in lpo:
260- ... print(train, test)
260+ ... print("%s %s" % ( train, test) )
261261 [2 3] [0 1]
262262 [1 3] [0 2]
263263 [1 2] [0 3]
@@ -291,7 +291,7 @@ a training set using the samples of all the experiments except one::
291291 sklearn.cross_validation.LeaveOneLabelOut(labels=[1, 1, 2, 2])
292292
293293 >>> for train, test in lolo:
294- ... print(train, test)
294+ ... print("%s %s" % ( train, test) )
295295 [2 3] [0 1]
296296 [0 1] [2 3]
297297
@@ -318,7 +318,7 @@ Example of Leave-2-Label Out::
318318 sklearn.cross_validation.LeavePLabelOut(labels=[1, 1, 2, 2, 3, 3], p=2)
319319
320320 >>> for train, test in lplo:
321- ... print(train, test)
321+ ... print("%s %s" % ( train, test) )
322322 [4 5] [0 1 2 3]
323323 [2 3] [0 1 4 5]
324324 [0 1] [2 3 4 5]
@@ -348,7 +348,7 @@ Here is a usage example::
348348 ShuffleSplit(5, n_iter=3, test_size=0.25, indices=True, ...)
349349
350350 >>> for train_index, test_index in ss:
351- ... print(train_index, test_index)
351+ ... print("%s %s" % ( train_index, test_index) )
352352 ...
353353 [1 3 4] [2 0]
354354 [1 4 3] [0 2]
@@ -394,7 +394,7 @@ smaller than the total dataset if it is very large.
394394 Bootstrap(9, n_iter=3, train_size=5, test_size=4, random_state=0)
395395
396396 >>> for train_index, test_index in bs:
397- ... print (train_index, test_index)
397+ ... print (" %s %s " % ( train_index, test_index) )
398398 ...
399399 [1 8 7 7 8] [0 3 0 5]
400400 [5 4 2 4 2] [6 7 1 0]
0 commit comments