Skip to content

Commit 092b357

Browse files
author
谢昕辰
authored
[Doc] Format readme (#1635)
* quick links * reorganize readme * move licence * modify README_zh-CN
1 parent 5748a6c commit 092b357

File tree

2 files changed

+85
-45
lines changed

2 files changed

+85
-45
lines changed

README.md

Lines changed: 46 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717
</sup>
1818
</div>
1919
<div>&nbsp;</div>
20-
</div>
20+
2121
<br />
2222

2323
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/)
@@ -29,20 +29,31 @@
2929
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
3030
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
3131

32-
Documentation: https://mmsegmentation.readthedocs.io/
32+
[📘Documentation](https://mmsegmentation.readthedocs.io/en/latest/) |
33+
[🛠️Installation](https://mmsegmentation.readthedocs.io/en/latest/get_started.html) |
34+
[👀Model Zoo](https://mmsegmentation.readthedocs.io/en/latest/model_zoo.html) |
35+
[🆕Update News](https://mmsegmentation.readthedocs.io/en/latest/changelog.html) |
36+
[🤔Reporting Issues](https://github.com/open-mmlab/mmsegmentation/issues/new/choose)
37+
38+
</div>
39+
40+
<div align="center">
3341

3442
English | [简体中文](README_zh-CN.md)
3543

44+
</div>
45+
3646
## Introduction
3747

3848
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch.
39-
It is a part of the OpenMMLab project.
49+
It is a part of the [OpenMMLab](https://openmmlab.com/) project.
4050

4151
The master branch works with **PyTorch 1.5+**.
4252

4353
![demo image](resources/seg_demo.gif)
4454

45-
### Major features
55+
<details open>
56+
<summary>Major features</summary>
4657

4758
- **Unified Benchmark**
4859

@@ -60,15 +71,31 @@ The master branch works with **PyTorch 1.5+**.
6071

6172
The training speed is faster than or comparable to other codebases.
6273

63-
## License
64-
65-
This project is released under the [Apache 2.0 license](LICENSE).
74+
</details>
6675

67-
## Changelog
76+
## What's New
6877

6978
v0.24.1 was released in 5/1/2022.
7079
Please refer to [changelog.md](docs/en/changelog.md) for details and release history.
7180

81+
## Installation
82+
83+
Please refer to [get_started.md](docs/en/get_started.md#installation) for installation and [dataset_prepare.md](docs/en/dataset_prepare.md#prepare-datasets) for dataset preparation.
84+
85+
## Get Started
86+
87+
Please see [train.md](docs/en/train.md) and [inference.md](docs/en/inference.md) for the basic usage of MMSegmentation.
88+
There are also tutorials for:
89+
90+
- [customizing dataset](docs/en/tutorials/customize_datasets.md)
91+
- [designing data pipeline](docs/en/tutorials/data_pipeline.md)
92+
- [customizing modules](docs/en/tutorials/customize_models.md)
93+
- [customizing runtime](docs/en/tutorials/customize_runtime.md)
94+
- [training tricks](docs/en/tutorials/training_tricks.md)
95+
- [useful tools](docs/en/useful_tools.md)
96+
97+
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb) on Colab.
98+
7299
## Benchmark and model zoo
73100

74101
Results and models are available in the [model zoo](docs/en/model_zoo.md).
@@ -144,19 +171,20 @@ Supported datasets:
144171
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isprs-vaihingen)
145172
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isaid)
146173

147-
## Installation
174+
## FAQ
148175

149-
Please refer to [get_started.md](docs/en/get_started.md#installation) for installation and [dataset_prepare.md](docs/en/dataset_prepare.md#prepare-datasets) for dataset preparation.
176+
Please refer to [FAQ](docs/en/faq.md) for frequently asked questions.
150177

151-
## Get Started
178+
## Contributing
152179

153-
Please see [train.md](docs/en/train.md) and [inference.md](docs/en/inference.md) for the basic usage of MMSegmentation.
154-
There are also tutorials for [customizing dataset](docs/en/tutorials/customize_datasets.md), [designing data pipeline](docs/en/tutorials/data_pipeline.md), [customizing modules](docs/en/tutorials/customize_models.md), and [customizing runtime](docs/en/tutorials/customize_runtime.md).
155-
We also provide many [training tricks](docs/en/tutorials/training_tricks.md) for better training and [useful tools](docs/en/useful_tools.md) for deployment.
180+
We appreciate all contributions to improve MMSegmentation. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
156181

157-
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb) on Colab.
182+
## Acknowledgement
158183

159-
Please refer to [FAQ](docs/en/faq.md) for frequently asked questions.
184+
MMSegmentation is an open source project that welcome any contribution and feedback.
185+
We wish that the toolbox and benchmark could serve the growing research
186+
community by providing a flexible as well as standardized toolkit to reimplement existing methods
187+
and develop their own new semantic segmentation methods.
160188

161189
## Citation
162190

@@ -171,16 +199,9 @@ If you find this project useful in your research, please consider cite:
171199
}
172200
```
173201

174-
## Contributing
175-
176-
We appreciate all contributions to improve MMSegmentation. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
177-
178-
## Acknowledgement
202+
## License
179203

180-
MMSegmentation is an open source project that welcome any contribution and feedback.
181-
We wish that the toolbox and benchmark could serve the growing research
182-
community by providing a flexible as well as standardized toolkit to reimplement existing methods
183-
and develop their own new semantic segmentation methods.
204+
This project is released under the [Apache 2.0 license](LICENSE).
184205

185206
## Projects in OpenMMLab
186207

README_zh-CN.md

Lines changed: 39 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717
</sup>
1818
</div>
1919
<div>&nbsp;</div>
20-
</div>
20+
2121
<br />
2222

2323
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/)
@@ -29,10 +29,16 @@
2929
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
3030
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
3131

32-
文档: https://mmsegmentation.readthedocs.io/zh_CN/latest
32+
[📘使用文档](https://mmsegmentation.readthedocs.io/en/latest/) |
33+
[🛠️安装指南](https://mmsegmentation.readthedocs.io/en/latest/get_started.html) |
34+
[👀模型库](https://mmsegmentation.readthedocs.io/en/latest/model_zoo.html) |
35+
[🆕更新日志](https://mmsegmentation.readthedocs.io/en/latest/changelog.html) |
36+
[🤔报告问题](https://github.com/open-mmlab/mmsegmentation/issues/new/choose)
3337

3438
[English](README.md) | 简体中文
3539

40+
</div>
41+
3642
## 简介
3743

3844
MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 OpenMMLab 项目的一部分。
@@ -41,6 +47,9 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
4147

4248
![示例图片](resources/seg_demo.gif)
4349

50+
<details open>
51+
<summary>Major features</summary>
52+
4453
### 主要特性
4554

4655
- **统一的基准平台**
@@ -59,15 +68,31 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
5968

6069
训练速度比其他语义分割代码库更快或者相当。
6170

62-
## 开源许可证
63-
64-
该项目采用 [Apache 2.0 开源许可证](LICENSE)
71+
</details>
6572

66-
## 更新日志
73+
## 最新进展
6774

6875
最新版本 v0.24.1 在 2022.5.1 发布。
6976
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/changelog.md)
7077

78+
## 安装
79+
80+
请参考[快速入门文档](docs/zh_cn/get_started.md#installation)进行安装,参考[数据集准备](docs/zh_cn/dataset_prepare.md)处理数据。
81+
82+
## 快速入门
83+
84+
请参考[训练教程](docs/zh_cn/train.md)[测试教程](docs/zh_cn/inference.md)学习 MMSegmentation 的基本使用。
85+
我们也提供了一些进阶教程,内容覆盖了:
86+
87+
- [增加自定义数据集](docs/zh_cn/tutorials/customize_datasets.md)
88+
- [设计新的数据预处理流程](docs/zh_cn/tutorials/data_pipeline.md)
89+
- [增加自定义模型](docs/zh_cn/tutorials/customize_models.md)
90+
- [增加自定义的运行时配置](docs/zh_cn/tutorials/customize_runtime.md)
91+
- [训练技巧说明](docs/zh_cn/tutorials/training_tricks.md)
92+
- [有用的工具](docs/zh_cn/useful_tools.md)
93+
94+
同时,我们提供了 Colab 教程。你可以在[这里](demo/MMSegmentation_Tutorial.ipynb)浏览教程,或者直接在 Colab 上[运行](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb)
95+
7196
## 基准测试和模型库
7297

7398
测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。
@@ -143,19 +168,17 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
143168
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#isprs-vaihingen)
144169
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#isaid)
145170

146-
## 安装
171+
## 常见问题
147172

148-
请参考[快速入门文档](docs/zh_cn/get_started.md#installation)进行安装,参考[数据集准备](docs/zh_cn/dataset_prepare.md)处理数据
173+
如果遇到问题,请参考 [常见问题解答](docs/zh_cn/faq.md)
149174

150-
## 快速入门
175+
## 贡献指南
151176

152-
请参考[训练教程](docs/zh_cn/train.md)[测试教程](docs/zh_cn/inference.md)学习 MMSegmentation 的基本使用。
153-
我们也提供了一些进阶教程,内容覆盖了[增加自定义数据集](docs/zh_cn/tutorials/customize_datasets.md)[设计新的数据预处理流程](docs/zh_cn/tutorials/data_pipeline.md)[增加自定义模型](docs/zh_cn/tutorials/customize_models.md)[增加自定义的运行时配置](docs/zh_cn/tutorials/customize_runtime.md)
154-
除此之外,我们也提供了很多实用的[训练技巧说明](docs/zh_cn/tutorials/training_tricks.md)和模型部署相关的[有用的工具](docs/zh_cn/useful_tools.md)
177+
我们感谢所有的贡献者为改进和提升 MMSegmentation 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
155178

156-
同时,我们提供了 Colab 教程。你可以在[这里](demo/MMSegmentation_Tutorial.ipynb)浏览教程,或者直接在 Colab 上[运行](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb)
179+
## 致谢
157180

158-
如果遇到问题,请参考 [常见问题解答](docs/zh_cn/faq.md)
181+
MMSegmentation 是一个由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献
159182

160183
## 引用
161184

@@ -170,13 +193,9 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
170193
}
171194
```
172195

173-
## 贡献指南
174-
175-
我们感谢所有的贡献者为改进和提升 MMSegmentation 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
176-
177-
## 致谢
196+
## 开源许可证
178197

179-
MMSegmentation 是一个由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献
198+
该项目采用 [Apache 2.0 开源许可证](LICENSE)
180199

181200
## OpenMMLab 的其他项目
182201

0 commit comments

Comments
 (0)