Skip to content

Commit 144dc39

Browse files
authored
[Feature] Update New SegFormer models (#1705)
1 parent 733ad9e commit 144dc39

15 files changed

+101
-66
lines changed

configs/segformer/README.md

Lines changed: 44 additions & 27 deletions
Large diffs are not rendered by default.

configs/segformer/segformer.yml

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ Models:
2222
crop size: (512,512)
2323
lr schd: 160000
2424
inference time (ms/im):
25-
- value: 19.49
25+
- value: 26.2
2626
hardware: V100
2727
backend: PyTorch
2828
batch size: 1
@@ -33,18 +33,18 @@ Models:
3333
- Task: Semantic Segmentation
3434
Dataset: ADE20K
3535
Metrics:
36-
mIoU: 37.41
37-
mIoU(ms+flip): 38.34
36+
mIoU: 37.85
37+
mIoU(ms+flip): 38.97
3838
Config: configs/segformer/segformer_mit-b0_512x512_160k_ade20k.py
39-
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth
39+
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20220617_162207-c00b9603.pth
4040
- Name: segformer_mit-b1_512x512_160k_ade20k
4141
In Collection: Segformer
4242
Metadata:
4343
backbone: MIT-B1
4444
crop size: (512,512)
4545
lr schd: 160000
4646
inference time (ms/im):
47-
- value: 20.98
47+
- value: 26.46
4848
hardware: V100
4949
backend: PyTorch
5050
batch size: 1
@@ -55,18 +55,18 @@ Models:
5555
- Task: Semantic Segmentation
5656
Dataset: ADE20K
5757
Metrics:
58-
mIoU: 40.97
59-
mIoU(ms+flip): 42.54
58+
mIoU: 42.13
59+
mIoU(ms+flip): 43.74
6060
Config: configs/segformer/segformer_mit-b1_512x512_160k_ade20k.py
61-
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth
61+
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20220620_112037-c3f39e00.pth
6262
- Name: segformer_mit-b2_512x512_160k_ade20k
6363
In Collection: Segformer
6464
Metadata:
6565
backbone: MIT-B2
6666
crop size: (512,512)
6767
lr schd: 160000
6868
inference time (ms/im):
69-
- value: 32.38
69+
- value: 37.31
7070
hardware: V100
7171
backend: PyTorch
7272
batch size: 1
@@ -77,18 +77,18 @@ Models:
7777
- Task: Semantic Segmentation
7878
Dataset: ADE20K
7979
Metrics:
80-
mIoU: 45.58
81-
mIoU(ms+flip): 47.03
80+
mIoU: 46.8
81+
mIoU(ms+flip): 48.12
8282
Config: configs/segformer/segformer_mit-b2_512x512_160k_ade20k.py
83-
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth
83+
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca.pth
8484
- Name: segformer_mit-b3_512x512_160k_ade20k
8585
In Collection: Segformer
8686
Metadata:
8787
backbone: MIT-B3
8888
crop size: (512,512)
8989
lr schd: 160000
9090
inference time (ms/im):
91-
- value: 45.23
91+
- value: 52.11
9292
hardware: V100
9393
backend: PyTorch
9494
batch size: 1
@@ -99,18 +99,18 @@ Models:
9999
- Task: Semantic Segmentation
100100
Dataset: ADE20K
101101
Metrics:
102-
mIoU: 47.82
103-
mIoU(ms+flip): 48.81
102+
mIoU: 48.25
103+
mIoU(ms+flip): 49.58
104104
Config: configs/segformer/segformer_mit-b3_512x512_160k_ade20k.py
105-
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth
105+
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20220617_162254-3a4b7363.pth
106106
- Name: segformer_mit-b4_512x512_160k_ade20k
107107
In Collection: Segformer
108108
Metadata:
109109
backbone: MIT-B4
110110
crop size: (512,512)
111111
lr schd: 160000
112112
inference time (ms/im):
113-
- value: 64.72
113+
- value: 68.78
114114
hardware: V100
115115
backend: PyTorch
116116
batch size: 1
@@ -121,10 +121,10 @@ Models:
121121
- Task: Semantic Segmentation
122122
Dataset: ADE20K
123123
Metrics:
124-
mIoU: 48.46
125-
mIoU(ms+flip): 49.76
124+
mIoU: 49.09
125+
mIoU(ms+flip): 50.72
126126
Config: configs/segformer/segformer_mit-b4_512x512_160k_ade20k.py
127-
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth
127+
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20220620_112216-4fa4f58f.pth
128128
- Name: segformer_mit-b5_512x512_160k_ade20k
129129
In Collection: Segformer
130130
Metadata:
@@ -154,7 +154,7 @@ Models:
154154
crop size: (640,640)
155155
lr schd: 160000
156156
inference time (ms/im):
157-
- value: 88.5
157+
- value: 94.34
158158
hardware: V100
159159
backend: PyTorch
160160
batch size: 1
@@ -165,10 +165,10 @@ Models:
165165
- Task: Semantic Segmentation
166166
Dataset: ADE20K
167167
Metrics:
168-
mIoU: 49.62
169-
mIoU(ms+flip): 50.36
168+
mIoU: 50.19
169+
mIoU(ms+flip): 51.41
170170
Config: configs/segformer/segformer_mit-b5_640x640_160k_ade20k.py
171-
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth
171+
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20220617_203542-940a6bd8.pth
172172
- Name: segformer_mit-b0_8x1_1024x1024_160k_cityscapes
173173
In Collection: Segformer
174174
Metadata:

configs/segformer/segformer_mit-b0_512x512_160k_ade20k.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,8 +3,9 @@
33
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
44
]
55

6-
model = dict(
7-
pretrained='pretrain/mit_b0.pth', decode_head=dict(num_classes=150))
6+
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b0_20220624-7e0fe6dd.pth' # noqa
7+
8+
model = dict(pretrained=checkpoint, decode_head=dict(num_classes=150))
89

910
# optimizer
1011
optimizer = dict(

configs/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,9 +4,10 @@
44
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
55
]
66

7+
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b0_20220624-7e0fe6dd.pth' # noqa
8+
79
model = dict(
8-
backbone=dict(
9-
init_cfg=dict(type='Pretrained', checkpoint='pretrain/mit_b0.pth')),
10+
backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=checkpoint)),
1011
test_cfg=dict(mode='slide', crop_size=(1024, 1024), stride=(768, 768)))
1112

1213
# optimizer
Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,10 @@
11
_base_ = ['./segformer_mit-b0_512x512_160k_ade20k.py']
22

3+
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b1_20220624-02e5a6a1.pth' # noqa
4+
35
# model settings
46
model = dict(
5-
pretrained='pretrain/mit_b1.pth',
7+
pretrained=checkpoint,
68
backbone=dict(
79
embed_dims=64, num_heads=[1, 2, 5, 8], num_layers=[2, 2, 2, 2]),
810
decode_head=dict(in_channels=[64, 128, 320, 512]))
Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,8 @@
11
_base_ = ['./segformer_mit-b0_8x1_1024x1024_160k_cityscapes.py']
22

3+
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b1_20220624-02e5a6a1.pth' # noqa
34
model = dict(
45
backbone=dict(
5-
init_cfg=dict(type='Pretrained', checkpoint='pretrain/mit_b1.pth'),
6+
init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
67
embed_dims=64),
78
decode_head=dict(in_channels=[64, 128, 320, 512]))
Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,10 @@
11
_base_ = ['./segformer_mit-b0_512x512_160k_ade20k.py']
22

3+
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b2_20220624-66e8bf70.pth' # noqa
4+
35
# model settings
46
model = dict(
5-
pretrained='pretrain/mit_b2.pth',
7+
pretrained=checkpoint,
68
backbone=dict(
79
embed_dims=64, num_heads=[1, 2, 5, 8], num_layers=[3, 4, 6, 3]),
810
decode_head=dict(in_channels=[64, 128, 320, 512]))
Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
11
_base_ = ['./segformer_mit-b0_8x1_1024x1024_160k_cityscapes.py']
22

3+
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b2_20220624-66e8bf70.pth' # noqa
34
model = dict(
45
backbone=dict(
5-
init_cfg=dict(type='Pretrained', checkpoint='pretrain/mit_b2.pth'),
6+
init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
67
embed_dims=64,
78
num_layers=[3, 4, 6, 3]),
89
decode_head=dict(in_channels=[64, 128, 320, 512]))
Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,10 @@
11
_base_ = ['./segformer_mit-b0_512x512_160k_ade20k.py']
22

3+
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b3_20220624-13b1141c.pth' # noqa
4+
35
# model settings
46
model = dict(
5-
pretrained='pretrain/mit_b3.pth',
7+
pretrained=checkpoint,
68
backbone=dict(
79
embed_dims=64, num_heads=[1, 2, 5, 8], num_layers=[3, 4, 18, 3]),
810
decode_head=dict(in_channels=[64, 128, 320, 512]))
Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
11
_base_ = ['./segformer_mit-b0_8x1_1024x1024_160k_cityscapes.py']
22

3+
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b3_20220624-13b1141c.pth' # noqa
34
model = dict(
45
backbone=dict(
5-
init_cfg=dict(type='Pretrained', checkpoint='pretrain/mit_b3.pth'),
6+
init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
67
embed_dims=64,
78
num_layers=[3, 4, 18, 3]),
89
decode_head=dict(in_channels=[64, 128, 320, 512]))

0 commit comments

Comments
 (0)