77import os .path as osp
88import shutil
99
10- import mmcv
1110import torch
11+ from mmengine import Config
12+ from mmengine .fileio import dump
13+ from mmengine .utils import mkdir_or_exist , scandir
1214
1315# build schedule look-up table to automatically find the final model
1416RESULTS_LUT = ['mIoU' , 'mAcc' , 'aAcc' ]
@@ -100,10 +102,10 @@ def main():
100102 work_dir = args .work_dir
101103 collect_dir = args .collect_dir
102104 selected_config_name = args .config_name
103- mmcv . mkdir_or_exist (collect_dir )
105+ mkdir_or_exist (collect_dir )
104106
105107 # find all models in the root directory to be gathered
106- raw_configs = list (mmcv . scandir ('./configs' , '.py' , recursive = True ))
108+ raw_configs = list (scandir ('./configs' , '.py' , recursive = True ))
107109
108110 # filter configs that is not trained in the experiments dir
109111 used_configs = []
@@ -175,7 +177,7 @@ def main():
175177 print (f'dir { model_publish_dir } exists, no model found' )
176178
177179 else :
178- mmcv . mkdir_or_exist (model_publish_dir )
180+ mkdir_or_exist (model_publish_dir )
179181
180182 # convert model
181183 final_model_path = process_checkpoint (trained_model_path ,
@@ -198,13 +200,13 @@ def main():
198200 if args .all :
199201 # copy config to guarantee reproducibility
200202 raw_config = osp .join ('./configs' , f'{ config_name } .py' )
201- mmcv . Config .fromfile (raw_config ).dump (
203+ Config .fromfile (raw_config ).dump (
202204 osp .join (model_publish_dir , osp .basename (raw_config )))
203205
204206 publish_model_infos .append (model )
205207
206208 models = dict (models = publish_model_infos )
207- mmcv . dump (models , osp .join (collect_dir , 'model_infos.json' ), indent = 4 )
209+ dump (models , osp .join (collect_dir , 'model_infos.json' ), indent = 4 )
208210
209211
210212if __name__ == '__main__' :
0 commit comments