Skip to content

Conversation

@Haser0305
Copy link
Collaborator

#1491

現在有時實做出 exporter 的實驗,目前有在 100GB 與 500GB 的情境下跑過 exporter 工具,在 100GB 的情況下沒有問題正常結束,但是 500GB 在中後期會如實驗中所敘述,發生 heap out of memory 的情況,目前的解法是變更 worker 的 heap 大小就可以正常執行。


並且在本專案建立的 worker 中,預設的 heap size 會發生 `OutOfMemory` 的問題,在手動變更 heap 的 max size 可以避免這問題。

下圖為 hadoop 在寫入時段的寫入速度狀況,平均寫入速度大概會在 300~600 這區間波動
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

是否有機會可以更細部的討論一下這個數字?例如只看 hdfs 的吞吐量大概是多少?我們的設計加上去後有沒有善用 hdfs 的效能?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已新增透過 hadoop fs 指令持續向 hdfs 寫入資料的速度變化圖
基本上 exporter 寫入的速度跟使用兩台同時向 hdfs 寫入的速度是差不多的

Copy link
Contributor

@chia7712 chia7712 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@Haser0305 感謝更新,可否把連結添加到 connector 首頁


## 結論

| 大小 | 類型 | 速度(MiB) | 時間 |
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

結論可否簡述工具做了什麼以及效能表現(與直接寫hdfs相較只損失了多少)

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好的,那我最近找時間再借一下機器做測試

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants