@@ -391,14 +391,14 @@ class ConvTranspose1d(_ConvTransposeMixin, _ConvNd):
391391 kernel_size (int or tuple): Size of the convolving kernel
392392 stride (int or tuple, optional): Stride of the convolution
393393 padding (int or tuple, optional): Zero-padding added to both sides of the input
394- dilation (int or tuple, optional): Spacing between kernel elements
394+ output_padding (int or tuple, optional): Zero-padding added to one side of the output
395395 groups (int, optional): Number of blocked connections from input channels to output channels
396396 bias (bool, optional): If True, adds a learnable bias to the output
397397
398398 Shape:
399399 - Input: :math:`(N, C_{in}, L_{in})`
400400 - Output: :math:`(N, C_{out}, L_{out})` where
401- :math:`L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel_size + output_padding `
401+ :math:`L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size + output\_padding `
402402
403403 Attributes:
404404 weight (Tensor): the learnable weights of the module of shape
@@ -434,8 +434,8 @@ class ConvTranspose2d(_ConvTransposeMixin, _ConvNd):
434434 | :attr:`stride` controls the stride for the cross-correlation.
435435 | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides
436436 for :attr:`padding` number of points
437- | If :attr:`padding ` is non-zero, then the output is implicitly zero-padded on both sides
438- for :attr:`padding ` number of points
437+ | If :attr:`output_padding ` is non-zero, then the output is implicitly zero-padded on one side
438+ for :attr:`output_padding ` number of points
439439 | :attr:`dilation` controls the spacing between the kernel points. It is harder to describe,
440440 but this `link`_ has a nice visualization of what :attr:`dilation` does.
441441 | :attr:`groups` controls the connections between inputs and outputs.
@@ -444,8 +444,8 @@ class ConvTranspose2d(_ConvTransposeMixin, _ConvNd):
444444 side by side, each seeing half the input channels,
445445 and producing half the output channels, and both subsequently concatenated.
446446
447- The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`,
448- :attr:`dilation` can either be:
447+ The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`
448+ can either be:
449449
450450 - a single ``int`` -- in which case the same value is used for the height and width dimension
451451 - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
@@ -464,15 +464,15 @@ class ConvTranspose2d(_ConvTransposeMixin, _ConvNd):
464464 kernel_size (int or tuple): Size of the convolving kernel
465465 stride (int or tuple, optional): Stride of the convolution
466466 padding (int or tuple, optional): Zero-padding added to both sides of the input
467- dilation (int or tuple, optional): Spacing between kernel elements
467+ output_padding (int or tuple, optional): Zero-padding added to one side of the output
468468 groups (int, optional): Number of blocked connections from input channels to output channels
469469 bias (bool, optional): If True, adds a learnable bias to the output
470470
471471 Shape:
472472 - Input: :math:`(N, C_{in}, H_{in}, W_{in})`
473473 - Output: :math:`(N, C_{out}, H_{out}, W_{out})` where
474- :math:`H_{out} = (H_{in} - 1) * stride[0] - 2 * padding[0] + kernel_size [0] + output_padding [0]`
475- :math:`W_{out} = (W_{in} - 1) * stride[1] - 2 * padding[1] + kernel_size [1] + output_padding [1]`
474+ :math:`H_{out} = (H_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size [0] + output\_padding [0]`
475+ :math:`W_{out} = (W_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size [1] + output\_padding [1]`
476476
477477 Attributes:
478478 weight (Tensor): the learnable weights of the module of shape
@@ -535,18 +535,16 @@ class ConvTranspose3d(_ConvTransposeMixin, _ConvNd):
535535 | :attr:`stride` controls the stride for the cross-correlation.
536536 | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides
537537 for :attr:`padding` number of points
538- | If :attr:`padding` is non-zero, then the output is implicitly zero-padded on both sides
539- for :attr:`padding` number of points
540- | :attr:`dilation` controls the spacing between the kernel points. It is harder to describe,
541- but this `link`_ has a nice visualization of what :attr:`dilation` does.
538+ | If :attr:`output_padding` is non-zero, then the output is implicitly zero-padded on one side
539+ for :attr:`output_padding` number of points
542540 | :attr:`groups` controls the connections between inputs and outputs.
543541 | At groups=1, all inputs are convolved to all outputs.
544542 | At groups=2, the operation becomes equivalent to having two conv layers
545543 side by side, each seeing half the input channels,
546544 and producing half the output channels, and both subsequently concatenated.
547545
548- The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`,
549- :attr:`dilation` can either be:
546+ The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`
547+ can either be:
550548
551549 - a single ``int`` -- in which case the same value is used for the height and width dimension
552550 - a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
@@ -565,16 +563,16 @@ class ConvTranspose3d(_ConvTransposeMixin, _ConvNd):
565563 kernel_size (int or tuple): Size of the convolving kernel
566564 stride (int or tuple, optional): Stride of the convolution
567565 padding (int or tuple, optional): Zero-padding added to both sides of the input
568- dilation (int or tuple, optional): Spacing between kernel elements
566+ output_padding (int or tuple, optional): Zero-padding added to one side of the output
569567 groups (int, optional): Number of blocked connections from input channels to output channels
570568 bias (bool, optional): If True, adds a learnable bias to the output
571569
572570 Shape:
573571 - Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
574572 - Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` where
575- :math:`D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel_size [0] + output_padding [0]`
576- :math:`H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel_size [1] + output_padding [1]`
577- :math:`W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel_size [2] + output_padding [2]`
573+ :math:`D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size [0] + output\_padding [0]`
574+ :math:`H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size [1] + output\_padding [1]`
575+ :math:`W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size [2] + output\_padding [2]`
578576
579577 Attributes:
580578 weight (Tensor): the learnable weights of the module of shape
0 commit comments