Skip to content

Commit 809e183

Browse files
Created using Colaboratory
1 parent 727fb34 commit 809e183

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

Chapter 01 - Euler Methods/1_Problem Sheet/102b_Problem_Sheet.ipynb

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
"colab_type": "text"
3434
},
3535
"source": [
36-
"<a href=\"https://colab.research.google.com/github/john-s-butler-dit/Numerical-Analysis-Python/blob/master/Chapter%2001%20-%20Euler%20Methods/1_Problem%20Sheet/01_Problem%20Sheet%201%20Question%202b.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
36+
"<a href=\"https://colab.research.google.com/github/john-s-butler-dit/Numerical-Analysis-Python/blob/master/Chapter%2001%20-%20Euler%20Methods/1_Problem%20Sheet/102b_Problem_Sheet.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
3737
]
3838
},
3939
{
@@ -73,7 +73,7 @@
7373
"\n",
7474
"warnings.filterwarnings(\"ignore\")"
7575
],
76-
"execution_count": 8,
76+
"execution_count": null,
7777
"outputs": []
7878
},
7979
{
@@ -120,7 +120,7 @@
120120
"plt.title('Illustration of discrete time points for h=%s'%(h))\n",
121121
"plt.plot();"
122122
],
123-
"execution_count": 9,
123+
"execution_count": null,
124124
"outputs": [
125125
{
126126
"output_type": "display_data",
@@ -167,7 +167,7 @@
167167
"for i in range (0,N):\n",
168168
" w[i+1]=w[i]+h*(w[i]-t[i])"
169169
],
170-
"execution_count": 10,
170+
"execution_count": null,
171171
"outputs": []
172172
},
173173
{
@@ -178,7 +178,7 @@
178178
"source": [
179179
"y=np.exp(t)+t+1 # Exact Solution"
180180
],
181-
"execution_count": 11,
181+
"execution_count": null,
182182
"outputs": []
183183
},
184184
{
@@ -212,7 +212,7 @@
212212
" \\begin{equation}|y(t_1)-w_1|<\\tau=\\frac{Mh}{2}=\\frac{8h}{2}=4h.\\end{equation}\n",
213213
"### Lipschitz constant\n",
214214
"The Lipschitz constant $L$ is from the Lipschitz condition,\n",
215-
" \\begin{equation}\\left| \\frac{\\partial f(t,y)}{\\partial t}\\right|\\leq L. \\end{equation}\n",
215+
" \\begin{equation}\\left| \\frac{\\partial f(t,y)}{\\partial y}\\right|\\leq L. \\end{equation}\n",
216216
"The constant can be found by taking partical derivative of $f(t,y)=y-t$ with respect to $y$\n",
217217
" \\begin{equation}\\frac{\\partial f(t,y)}{\\partial y}=1\\end{equation}\n",
218218
" \\begin{equation}L=1.\\end{equation}\n",
@@ -230,7 +230,7 @@
230230
"source": [
231231
"Upper_bound=8*h/(2*1)*(np.exp(t)-1) # Upper Bound"
232232
],
233-
"execution_count": 12,
233+
"execution_count": null,
234234
"outputs": []
235235
},
236236
{
@@ -285,7 +285,7 @@
285285
"plt.tight_layout()\n",
286286
"plt.subplots_adjust(top=0.85) "
287287
],
288-
"execution_count": 13,
288+
"execution_count": null,
289289
"outputs": [
290290
{
291291
"output_type": "display_data",
@@ -317,7 +317,7 @@
317317
"df = pd.DataFrame(data=d)\n",
318318
"df"
319319
],
320-
"execution_count": 14,
320+
"execution_count": null,
321321
"outputs": [
322322
{
323323
"output_type": "execute_result",
@@ -415,7 +415,7 @@
415415
"source": [
416416
""
417417
],
418-
"execution_count": 14,
418+
"execution_count": null,
419419
"outputs": []
420420
}
421421
]

0 commit comments

Comments
 (0)