@@ -22,7 +22,7 @@ Models:
2222 crop size : (512,512)
2323 lr schd : 160000
2424 inference time (ms/im) :
25- - value : 19.49
25+ - value : 26.2
2626 hardware : V100
2727 backend : PyTorch
2828 batch size : 1
@@ -33,18 +33,18 @@ Models:
3333 - Task : Semantic Segmentation
3434 Dataset : ADE20K
3535 Metrics :
36- mIoU : 37.41
37- mIoU(ms+flip) : 38.34
36+ mIoU : 37.85
37+ mIoU(ms+flip) : 38.97
3838 Config : configs/segformer/segformer_mit-b0_512x512_160k_ade20k.py
39- Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda .pth
39+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20220617_162207-c00b9603 .pth
4040- Name : segformer_mit-b1_512x512_160k_ade20k
4141 In Collection : Segformer
4242 Metadata :
4343 backbone : MIT-B1
4444 crop size : (512,512)
4545 lr schd : 160000
4646 inference time (ms/im) :
47- - value : 20.98
47+ - value : 26.46
4848 hardware : V100
4949 backend : PyTorch
5050 batch size : 1
@@ -55,18 +55,18 @@ Models:
5555 - Task : Semantic Segmentation
5656 Dataset : ADE20K
5757 Metrics :
58- mIoU : 40.97
59- mIoU(ms+flip) : 42.54
58+ mIoU : 42.13
59+ mIoU(ms+flip) : 43.74
6060 Config : configs/segformer/segformer_mit-b1_512x512_160k_ade20k.py
61- Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d .pth
61+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20220620_112037-c3f39e00 .pth
6262- Name : segformer_mit-b2_512x512_160k_ade20k
6363 In Collection : Segformer
6464 Metadata :
6565 backbone : MIT-B2
6666 crop size : (512,512)
6767 lr schd : 160000
6868 inference time (ms/im) :
69- - value : 32.38
69+ - value : 37.31
7070 hardware : V100
7171 backend : PyTorch
7272 batch size : 1
@@ -77,18 +77,18 @@ Models:
7777 - Task : Semantic Segmentation
7878 Dataset : ADE20K
7979 Metrics :
80- mIoU : 45.58
81- mIoU(ms+flip) : 47.03
80+ mIoU : 46.8
81+ mIoU(ms+flip) : 48.12
8282 Config : configs/segformer/segformer_mit-b2_512x512_160k_ade20k.py
83- Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac .pth
83+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20220620_114047-64e4feca .pth
8484- Name : segformer_mit-b3_512x512_160k_ade20k
8585 In Collection : Segformer
8686 Metadata :
8787 backbone : MIT-B3
8888 crop size : (512,512)
8989 lr schd : 160000
9090 inference time (ms/im) :
91- - value : 45.23
91+ - value : 52.11
9292 hardware : V100
9393 backend : PyTorch
9494 batch size : 1
@@ -99,18 +99,18 @@ Models:
9999 - Task : Semantic Segmentation
100100 Dataset : ADE20K
101101 Metrics :
102- mIoU : 47.82
103- mIoU(ms+flip) : 48.81
102+ mIoU : 48.25
103+ mIoU(ms+flip) : 49.58
104104 Config : configs/segformer/segformer_mit-b3_512x512_160k_ade20k.py
105- Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2 .pth
105+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20220617_162254-3a4b7363 .pth
106106- Name : segformer_mit-b4_512x512_160k_ade20k
107107 In Collection : Segformer
108108 Metadata :
109109 backbone : MIT-B4
110110 crop size : (512,512)
111111 lr schd : 160000
112112 inference time (ms/im) :
113- - value : 64.72
113+ - value : 68.78
114114 hardware : V100
115115 backend : PyTorch
116116 batch size : 1
@@ -121,10 +121,10 @@ Models:
121121 - Task : Semantic Segmentation
122122 Dataset : ADE20K
123123 Metrics :
124- mIoU : 48.46
125- mIoU(ms+flip) : 49.76
124+ mIoU : 49.09
125+ mIoU(ms+flip) : 50.72
126126 Config : configs/segformer/segformer_mit-b4_512x512_160k_ade20k.py
127- Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d .pth
127+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20220620_112216-4fa4f58f .pth
128128- Name : segformer_mit-b5_512x512_160k_ade20k
129129 In Collection : Segformer
130130 Metadata :
@@ -154,7 +154,7 @@ Models:
154154 crop size : (640,640)
155155 lr schd : 160000
156156 inference time (ms/im) :
157- - value : 88.5
157+ - value : 94.34
158158 hardware : V100
159159 backend : PyTorch
160160 batch size : 1
@@ -165,10 +165,10 @@ Models:
165165 - Task : Semantic Segmentation
166166 Dataset : ADE20K
167167 Metrics :
168- mIoU : 49.62
169- mIoU(ms+flip) : 50.36
168+ mIoU : 50.19
169+ mIoU(ms+flip) : 51.41
170170 Config : configs/segformer/segformer_mit-b5_640x640_160k_ade20k.py
171- Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b .pth
171+ Weights : https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20220617_203542-940a6bd8 .pth
172172- Name : segformer_mit-b0_8x1_1024x1024_160k_cityscapes
173173 In Collection : Segformer
174174 Metadata :
0 commit comments