Skip to content

Commit 8556944

Browse files
authored
[Feature] Add Swin Large(Swin-L) Transformer models (open-mmlab#1471)
* [Feature] Add Swin Large(Swin-L) Transformer models * fix
1 parent 0fa7c95 commit 8556944

File tree

4 files changed

+89
-16
lines changed

4 files changed

+89
-16
lines changed

configs/swin/README.md

Lines changed: 20 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -53,24 +53,28 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in
5353

5454
In our default setting, pretrained models and their corresponding [original models](https://github.com/microsoft/Swin-Transforme) models could be defined below:
5555

56-
| pretrained models | original models |
57-
| ---------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- |
58-
| pretrain/swin_tiny_patch4_window7_224.pth | [swin_tiny_patch4_window7_224.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth) |
59-
| pretrain/swin_small_patch4_window7_224.pth | [swin_small_patch4_window7_224.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth) |
60-
| pretrain/swin_base_patch4_window7_224.pth | [swin_base_patch4_window7_224.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth) |
61-
| pretrain/swin_base_patch4_window7_224_22k.pth | [swin_base_patch4_window7_224_22k.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth) |
62-
| pretrain/swin_base_patch4_window12_384.pth | [swin_base_patch4_window12_384.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth) |
63-
| pretrain/swin_base_patch4_window12_384_22k.pth | [swin_base_patch4_window12_384_22k.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth) |
56+
| pretrained models | original models |
57+
| ----------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- |
58+
| pretrain/swin_tiny_patch4_window7_224.pth | [swin_tiny_patch4_window7_224.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth) |
59+
| pretrain/swin_small_patch4_window7_224.pth | [swin_small_patch4_window7_224.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth) |
60+
| pretrain/swin_base_patch4_window7_224.pth | [swin_base_patch4_window7_224.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth) |
61+
| pretrain/swin_base_patch4_window7_224_22k.pth | [swin_base_patch4_window7_224_22k.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth) |
62+
| pretrain/swin_base_patch4_window12_384.pth | [swin_base_patch4_window12_384.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth) |
63+
| pretrain/swin_base_patch4_window12_384_22k.pth | [swin_base_patch4_window12_384_22k.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth) |
64+
| pretrain/swin_large_patch4_window7_224_22k.pth | [swin_large_patch4_window7_224_22k.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth) |
65+
| pretrain/swin_large_patch4_window12_384_22k.pth | [swin_large_patch4_window12_384_22k.pth](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth) |
6466

6567
## Results and models
6668

6769
### ADE20K
6870

69-
| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
70-
| ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
71-
| UPerNet | Swin-T | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 5.02 | 21.06 | 44.41 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json) |
72-
| UPerNet | Swin-S | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 6.17 | 14.72 | 47.72 | 49.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json) |
73-
| UPerNet | Swin-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 7.61 | 12.65 | 47.99 | 49.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json) |
74-
| UPerNet | Swin-B | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | - | - | 50.31 | 51.9 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json) |
75-
| UPerNet | Swin-B | 512x512 | ImageNet-1K | 384x384 | 16 | 160000 | 8.52 | 12.10 | 48.35 | 49.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json) |
76-
| UPerNet | Swin-B | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | - | - | 50.76 | 52.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json) |
71+
| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
72+
| ------- | -------- | --------- | ------------ | ----------------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
73+
| UPerNet | Swin-T | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 5.02 | 21.06 | 44.41 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json) |
74+
| UPerNet | Swin-S | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 6.17 | 14.72 | 47.72 | 49.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json) |
75+
| UPerNet | Swin-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 7.61 | 12.65 | 47.99 | 49.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json) |
76+
| UPerNet | Swin-B | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | - | - | 50.31 | 51.9 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json) |
77+
| UPerNet | Swin-B | 512x512 | ImageNet-1K | 384x384 | 16 | 160000 | 8.52 | 12.10 | 48.35 | 49.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json) |
78+
| UPerNet | Swin-B | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | - | - | 50.76 | 52.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json) |
79+
| UPerNet | Swin-L | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | 10.98 | 8.23 | 51.17 | 52.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k_20220318_015320-48d180dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k_20220318_015320.log.json) |
80+
| UPerNet | Swin-L | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | 12.42 | 7.57 | 52.25 | 54.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743.log.json) |

configs/swin/swin.yml

Lines changed: 44 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -115,3 +115,47 @@ Models:
115115
mIoU(ms+flip): 52.4
116116
Config: configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K.py
117117
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth
118+
- Name: upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k
119+
In Collection: UPerNet
120+
Metadata:
121+
backbone: Swin-L
122+
crop size: (512,512)
123+
lr schd: 160000
124+
inference time (ms/im):
125+
- value: 121.51
126+
hardware: V100
127+
backend: PyTorch
128+
batch size: 1
129+
mode: FP32
130+
resolution: (512,512)
131+
Training Memory (GB): 10.98
132+
Results:
133+
- Task: Semantic Segmentation
134+
Dataset: ADE20K
135+
Metrics:
136+
mIoU: 51.17
137+
mIoU(ms+flip): 52.99
138+
Config: configs/swin/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k.py
139+
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k_20220318_015320-48d180dd.pth
140+
- Name: upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k
141+
In Collection: UPerNet
142+
Metadata:
143+
backbone: Swin-L
144+
crop size: (512,512)
145+
lr schd: 160000
146+
inference time (ms/im):
147+
- value: 132.1
148+
hardware: V100
149+
backend: PyTorch
150+
batch size: 1
151+
mode: FP32
152+
resolution: (512,512)
153+
Training Memory (GB): 12.42
154+
Results:
155+
- Task: Semantic Segmentation
156+
Dataset: ADE20K
157+
Metrics:
158+
mIoU: 52.25
159+
mIoU(ms+flip): 54.12
160+
Config: configs/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k.py
161+
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth

0 commit comments

Comments
 (0)