Skip to content

Commit 95fa18f

Browse files
authored
TST Fixes docstring ordering and test_docstring_parameters (scikit-learn#19048)
1 parent e6e543b commit 95fa18f

File tree

13 files changed

+119
-107
lines changed

13 files changed

+119
-107
lines changed

sklearn/compose/_column_transformer.py

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -809,6 +809,14 @@ def __init__(self, pattern=None, *, dtype_include=None,
809809
self.dtype_exclude = dtype_exclude
810810

811811
def __call__(self, df):
812+
"""Callable for column selection to be used by a
813+
:class:`ColumnTransformer`.
814+
815+
Parameters
816+
----------
817+
df : dataframe of shape (n_features, n_samples)
818+
DataFrame to select columns from.
819+
"""
812820
if not hasattr(df, 'iloc'):
813821
raise ValueError("make_column_selector can only be applied to "
814822
"pandas dataframes")

sklearn/covariance/_robust_covariance.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -632,7 +632,7 @@ def fit(self, X, y=None):
632632
Training data, where `n_samples` is the number of samples
633633
and `n_features` is the number of features.
634634
635-
y: Ignored
635+
y : Ignored
636636
Not used, present for API consistency by convention.
637637
638638
Returns

sklearn/covariance/_shrunk_covariance.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,7 @@ def fit(self, X, y=None):
135135
Training data, where n_samples is the number of samples
136136
and n_features is the number of features.
137137
138-
y: Ignored
138+
y : Ignored
139139
Not used, present for API consistency by convention.
140140
141141
Returns

sklearn/cross_decomposition/_pls.py

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -537,7 +537,8 @@ class PLSRegression(_PLS):
537537
`Y = X @ coef_`.
538538
539539
n_iter_ : list of shape (n_components,)
540-
Number of iterations of the power method for each component.
540+
Number of iterations of the power method, for each
541+
component.
541542
542543
n_features_in_ : int
543544
Number of features seen during :term:`fit`.

sklearn/decomposition/_dict_learning.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1123,6 +1123,8 @@ def transform(self, X, y=None):
11231123
Test data to be transformed, must have the same number of
11241124
features as the data used to train the model.
11251125
1126+
y : Ignored
1127+
11261128
Returns
11271129
-------
11281130
X_new : ndarray of shape (n_samples, n_components)

sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -940,14 +940,6 @@ class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting):
940940
Features with a small number of unique values may use less than
941941
``max_bins`` bins. In addition to the ``max_bins`` bins, one more bin
942942
is always reserved for missing values. Must be no larger than 255.
943-
monotonic_cst : array-like of int of shape (n_features), default=None
944-
Indicates the monotonic constraint to enforce on each feature. -1, 1
945-
and 0 respectively correspond to a negative constraint, positive
946-
constraint and no constraint. Read more in the :ref:`User Guide
947-
<monotonic_cst_gbdt>`.
948-
949-
.. versionadded:: 0.23
950-
951943
categorical_features : array-like of {bool, int} of shape (n_features) \
952944
or shape (n_categorical_features,), default=None.
953945
Indicates the categorical features.
@@ -964,6 +956,14 @@ class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting):
964956
965957
.. versionadded:: 0.24
966958
959+
monotonic_cst : array-like of int of shape (n_features), default=None
960+
Indicates the monotonic constraint to enforce on each feature. -1, 1
961+
and 0 respectively correspond to a negative constraint, positive
962+
constraint and no constraint. Read more in the :ref:`User Guide
963+
<monotonic_cst_gbdt>`.
964+
965+
.. versionadded:: 0.23
966+
967967
warm_start : bool, default=False
968968
When set to ``True``, reuse the solution of the previous call to fit
969969
and add more estimators to the ensemble. For results to be valid, the
@@ -1193,14 +1193,6 @@ class HistGradientBoostingClassifier(ClassifierMixin,
11931193
Features with a small number of unique values may use less than
11941194
``max_bins`` bins. In addition to the ``max_bins`` bins, one more bin
11951195
is always reserved for missing values. Must be no larger than 255.
1196-
monotonic_cst : array-like of int of shape (n_features), default=None
1197-
Indicates the monotonic constraint to enforce on each feature. -1, 1
1198-
and 0 respectively correspond to a negative constraint, positive
1199-
constraint and no constraint. Read more in the :ref:`User Guide
1200-
<monotonic_cst_gbdt>`.
1201-
1202-
.. versionadded:: 0.23
1203-
12041196
categorical_features : array-like of {bool, int} of shape (n_features) \
12051197
or shape (n_categorical_features,), default=None.
12061198
Indicates the categorical features.
@@ -1217,6 +1209,14 @@ class HistGradientBoostingClassifier(ClassifierMixin,
12171209
12181210
.. versionadded:: 0.24
12191211
1212+
monotonic_cst : array-like of int of shape (n_features), default=None
1213+
Indicates the monotonic constraint to enforce on each feature. -1, 1
1214+
and 0 respectively correspond to a negative constraint, positive
1215+
constraint and no constraint. Read more in the :ref:`User Guide
1216+
<monotonic_cst_gbdt>`.
1217+
1218+
.. versionadded:: 0.23
1219+
12201220
warm_start : bool, default=False
12211221
When set to ``True``, reuse the solution of the previous call to fit
12221222
and add more estimators to the ensemble. For results to be valid, the

sklearn/feature_selection/_sequential.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ class SequentialFeatureSelector(SelectorMixin, MetaEstimatorMixin,
3636
to select. If float between 0 and 1, it is the fraction of features to
3737
select.
3838
39-
direction: {'forward', 'backward'}, default='forward'
39+
direction : {'forward', 'backward'}, default='forward'
4040
Whether to perform forward selection or backward selection.
4141
4242
scoring : str, callable, list/tuple or dict, default=None

sklearn/linear_model/_glm/glm.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -593,6 +593,10 @@ class TweedieRegressor(GeneralizedLinearRegressor):
593593
GLMs. In this case, the design matrix `X` must have full column rank
594594
(no collinearities).
595595
596+
fit_intercept : bool, default=True
597+
Specifies if a constant (a.k.a. bias or intercept) should be
598+
added to the linear predictor (X @ coef + intercept).
599+
596600
link : {'auto', 'identity', 'log'}, default='auto'
597601
The link function of the GLM, i.e. mapping from linear predictor
598602
`X @ coeff + intercept` to prediction `y_pred`. Option 'auto' sets
@@ -601,10 +605,6 @@ class TweedieRegressor(GeneralizedLinearRegressor):
601605
- 'identity' for Normal distribution
602606
- 'log' for Poisson, Gamma and Inverse Gaussian distributions
603607
604-
fit_intercept : bool, default=True
605-
Specifies if a constant (a.k.a. bias or intercept) should be
606-
added to the linear predictor (X @ coef + intercept).
607-
608608
max_iter : int, default=100
609609
The maximal number of iterations for the solver.
610610

sklearn/metrics/_plot/det_curve.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -22,8 +22,8 @@ class DetCurveDisplay:
2222
fpr : ndarray
2323
False positive rate.
2424
25-
tpr : ndarray
26-
True positive rate.
25+
fnr : ndarray
26+
False negative rate.
2727
2828
estimator_name : str, default=None
2929
Name of estimator. If None, the estimator name is not shown.

sklearn/model_selection/_search.py

Lines changed: 72 additions & 72 deletions
Original file line numberDiff line numberDiff line change
@@ -1024,42 +1024,6 @@ class GridSearchCV(BaseSearchCV):
10241024
.. versionchanged:: v0.20
10251025
`n_jobs` default changed from 1 to None
10261026
1027-
pre_dispatch : int, or str, default=n_jobs
1028-
Controls the number of jobs that get dispatched during parallel
1029-
execution. Reducing this number can be useful to avoid an
1030-
explosion of memory consumption when more jobs get dispatched
1031-
than CPUs can process. This parameter can be:
1032-
1033-
- None, in which case all the jobs are immediately
1034-
created and spawned. Use this for lightweight and
1035-
fast-running jobs, to avoid delays due to on-demand
1036-
spawning of the jobs
1037-
1038-
- An int, giving the exact number of total jobs that are
1039-
spawned
1040-
1041-
- A str, giving an expression as a function of n_jobs,
1042-
as in '2*n_jobs'
1043-
1044-
cv : int, cross-validation generator or an iterable, default=None
1045-
Determines the cross-validation splitting strategy.
1046-
Possible inputs for cv are:
1047-
1048-
- None, to use the default 5-fold cross validation,
1049-
- integer, to specify the number of folds in a `(Stratified)KFold`,
1050-
- :term:`CV splitter`,
1051-
- An iterable yielding (train, test) splits as arrays of indices.
1052-
1053-
For integer/None inputs, if the estimator is a classifier and ``y`` is
1054-
either binary or multiclass, :class:`StratifiedKFold` is used. In all
1055-
other cases, :class:`KFold` is used.
1056-
1057-
Refer :ref:`User Guide <cross_validation>` for the various
1058-
cross-validation strategies that can be used here.
1059-
1060-
.. versionchanged:: 0.22
1061-
``cv`` default value if None changed from 3-fold to 5-fold.
1062-
10631027
refit : bool, str, or callable, default=True
10641028
Refit an estimator using the best found parameters on the whole
10651029
dataset.
@@ -1090,6 +1054,25 @@ class GridSearchCV(BaseSearchCV):
10901054
.. versionchanged:: 0.20
10911055
Support for callable added.
10921056
1057+
cv : int, cross-validation generator or an iterable, default=None
1058+
Determines the cross-validation splitting strategy.
1059+
Possible inputs for cv are:
1060+
1061+
- None, to use the default 5-fold cross validation,
1062+
- integer, to specify the number of folds in a `(Stratified)KFold`,
1063+
- :term:`CV splitter`,
1064+
- An iterable yielding (train, test) splits as arrays of indices.
1065+
1066+
For integer/None inputs, if the estimator is a classifier and ``y`` is
1067+
either binary or multiclass, :class:`StratifiedKFold` is used. In all
1068+
other cases, :class:`KFold` is used.
1069+
1070+
Refer :ref:`User Guide <cross_validation>` for the various
1071+
cross-validation strategies that can be used here.
1072+
1073+
.. versionchanged:: 0.22
1074+
``cv`` default value if None changed from 3-fold to 5-fold.
1075+
10931076
verbose : int
10941077
Controls the verbosity: the higher, the more messages.
10951078
@@ -1099,6 +1082,23 @@ class GridSearchCV(BaseSearchCV):
10991082
- >3 : the fold and candidate parameter indexes are also displayed
11001083
together with the starting time of the computation.
11011084
1085+
pre_dispatch : int, or str, default=n_jobs
1086+
Controls the number of jobs that get dispatched during parallel
1087+
execution. Reducing this number can be useful to avoid an
1088+
explosion of memory consumption when more jobs get dispatched
1089+
than CPUs can process. This parameter can be:
1090+
1091+
- None, in which case all the jobs are immediately
1092+
created and spawned. Use this for lightweight and
1093+
fast-running jobs, to avoid delays due to on-demand
1094+
spawning of the jobs
1095+
1096+
- An int, giving the exact number of total jobs that are
1097+
spawned
1098+
1099+
- A str, giving an expression as a function of n_jobs,
1100+
as in '2*n_jobs'
1101+
11021102
error_score : 'raise' or numeric, default=np.nan
11031103
Value to assign to the score if an error occurs in estimator fitting.
11041104
If set to 'raise', the error is raised. If a numeric value is given,
@@ -1366,42 +1366,6 @@ class RandomizedSearchCV(BaseSearchCV):
13661366
.. versionchanged:: v0.20
13671367
`n_jobs` default changed from 1 to None
13681368
1369-
pre_dispatch : int, or str, default=None
1370-
Controls the number of jobs that get dispatched during parallel
1371-
execution. Reducing this number can be useful to avoid an
1372-
explosion of memory consumption when more jobs get dispatched
1373-
than CPUs can process. This parameter can be:
1374-
1375-
- None, in which case all the jobs are immediately
1376-
created and spawned. Use this for lightweight and
1377-
fast-running jobs, to avoid delays due to on-demand
1378-
spawning of the jobs
1379-
1380-
- An int, giving the exact number of total jobs that are
1381-
spawned
1382-
1383-
- A str, giving an expression as a function of n_jobs,
1384-
as in '2*n_jobs'
1385-
1386-
cv : int, cross-validation generator or an iterable, default=None
1387-
Determines the cross-validation splitting strategy.
1388-
Possible inputs for cv are:
1389-
1390-
- None, to use the default 5-fold cross validation,
1391-
- integer, to specify the number of folds in a `(Stratified)KFold`,
1392-
- :term:`CV splitter`,
1393-
- An iterable yielding (train, test) splits as arrays of indices.
1394-
1395-
For integer/None inputs, if the estimator is a classifier and ``y`` is
1396-
either binary or multiclass, :class:`StratifiedKFold` is used. In all
1397-
other cases, :class:`KFold` is used.
1398-
1399-
Refer :ref:`User Guide <cross_validation>` for the various
1400-
cross-validation strategies that can be used here.
1401-
1402-
.. versionchanged:: 0.22
1403-
``cv`` default value if None changed from 3-fold to 5-fold.
1404-
14051369
refit : bool, str, or callable, default=True
14061370
Refit an estimator using the best found parameters on the whole
14071371
dataset.
@@ -1432,9 +1396,45 @@ class RandomizedSearchCV(BaseSearchCV):
14321396
.. versionchanged:: 0.20
14331397
Support for callable added.
14341398
1399+
cv : int, cross-validation generator or an iterable, default=None
1400+
Determines the cross-validation splitting strategy.
1401+
Possible inputs for cv are:
1402+
1403+
- None, to use the default 5-fold cross validation,
1404+
- integer, to specify the number of folds in a `(Stratified)KFold`,
1405+
- :term:`CV splitter`,
1406+
- An iterable yielding (train, test) splits as arrays of indices.
1407+
1408+
For integer/None inputs, if the estimator is a classifier and ``y`` is
1409+
either binary or multiclass, :class:`StratifiedKFold` is used. In all
1410+
other cases, :class:`KFold` is used.
1411+
1412+
Refer :ref:`User Guide <cross_validation>` for the various
1413+
cross-validation strategies that can be used here.
1414+
1415+
.. versionchanged:: 0.22
1416+
``cv`` default value if None changed from 3-fold to 5-fold.
1417+
14351418
verbose : int
14361419
Controls the verbosity: the higher, the more messages.
14371420
1421+
pre_dispatch : int, or str, default=None
1422+
Controls the number of jobs that get dispatched during parallel
1423+
execution. Reducing this number can be useful to avoid an
1424+
explosion of memory consumption when more jobs get dispatched
1425+
than CPUs can process. This parameter can be:
1426+
1427+
- None, in which case all the jobs are immediately
1428+
created and spawned. Use this for lightweight and
1429+
fast-running jobs, to avoid delays due to on-demand
1430+
spawning of the jobs
1431+
1432+
- An int, giving the exact number of total jobs that are
1433+
spawned
1434+
1435+
- A str, giving an expression as a function of n_jobs,
1436+
as in '2*n_jobs'
1437+
14381438
random_state : int, RandomState instance or None, default=None
14391439
Pseudo random number generator state used for random uniform sampling
14401440
from lists of possible values instead of scipy.stats distributions.

0 commit comments

Comments
 (0)