|
31 | 31 | "print(torch.__version__, ignite.__version__)" |
32 | 32 | ] |
33 | 33 | }, |
| 34 | + { |
| 35 | + "attachments": {}, |
| 36 | + "cell_type": "markdown", |
| 37 | + "metadata": { |
| 38 | + "vscode": { |
| 39 | + "languageId": "plaintext" |
| 40 | + } |
| 41 | + }, |
| 42 | + "source": [ |
| 43 | + "### Basic setup with various events filtering use-cases" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "attachments": {}, |
| 48 | + "cell_type": "markdown", |
| 49 | + "metadata": {}, |
| 50 | + "source": [ |
| 51 | + "from ignite.engine import Engine, Events\n", |
| 52 | + "from ignite.utils import setup_logger, logging\n", |
| 53 | + "\n", |
| 54 | + "\n", |
| 55 | + "train_data = range(10)\n", |
| 56 | + "eval_data = range(4)\n", |
| 57 | + "max_epochs = 5\n", |
| 58 | + "\n", |
| 59 | + "\n", |
| 60 | + "def train_step(engine, batch):\n", |
| 61 | + " print(f\"{engine.state.epoch} / {engine.state.max_epochs} | {engine.state.iteration} - batch: {batch}\", flush=True)\n", |
| 62 | + "\n", |
| 63 | + "trainer = Engine(train_step)\n", |
| 64 | + "\n", |
| 65 | + "# Enable trainer logger for a debug mode\n", |
| 66 | + "# trainer.logger = setup_logger(\"trainer\", level=logging.DEBUG)\n", |
| 67 | + "\n", |
| 68 | + "evaluator = Engine(lambda e, b: None)\n", |
| 69 | + "\n", |
| 70 | + "\n", |
| 71 | + "@trainer.on(Events.EPOCH_COMPLETED(every=2))\n", |
| 72 | + "def run_validation():\n", |
| 73 | + " print(f\"{trainer.state.epoch} / {trainer.state.max_epochs} | {trainer.state.iteration} - run validation\", flush=True)\n", |
| 74 | + " evaluator.run(eval_data)\n", |
| 75 | + "\n", |
| 76 | + "\n", |
| 77 | + "@trainer.on(Events.ITERATION_COMPLETED(every=7))\n", |
| 78 | + "def log_events_filtering__every():\n", |
| 79 | + " print(f\"{trainer.state.epoch} / {trainer.state.max_epochs} | {trainer.state.iteration} - calling log_events_filtering__every\", flush=True)\n", |
| 80 | + "\n", |
| 81 | + " \n", |
| 82 | + "@trainer.on(Events.EPOCH_COMPLETED(once=3))\n", |
| 83 | + "def log_events_filtering__once():\n", |
| 84 | + " print(f\"{trainer.state.epoch} / {trainer.state.max_epochs} | {trainer.state.iteration} - calling log_events_filtering__once\", flush=True)\n", |
| 85 | + "\n", |
| 86 | + "\n", |
| 87 | + "def custom_event_filter(engine, event):\n", |
| 88 | + " if trainer.state.epoch == 2 and event in (1, 3):\n", |
| 89 | + " return True\n", |
| 90 | + " return False\n", |
| 91 | + " \n", |
| 92 | + "\n", |
| 93 | + "@evaluator.on(Events.ITERATION_COMPLETED(event_filter=custom_event_filter))\n", |
| 94 | + "def log_events_filtering__event_filter():\n", |
| 95 | + " print(f\"{trainer.state.epoch} / {trainer.state.max_epochs} | {evaluator.state.iteration} - calling log_events_filtering__event_filter\", flush=True)\n", |
| 96 | + " \n", |
| 97 | + "\n", |
| 98 | + "trainer.run(train_data, max_epochs=max_epochs)" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": null, |
| 104 | + "metadata": { |
| 105 | + "vscode": { |
| 106 | + "languageId": "plaintext" |
| 107 | + } |
| 108 | + }, |
| 109 | + "outputs": [], |
| 110 | + "source": [] |
| 111 | + }, |
| 112 | + { |
| 113 | + "attachments": {}, |
| 114 | + "cell_type": "markdown", |
| 115 | + "metadata": {}, |
| 116 | + "source": [ |
| 117 | + "### Distributed run with 2 processes" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "metadata": { |
| 124 | + "vscode": { |
| 125 | + "languageId": "plaintext" |
| 126 | + } |
| 127 | + }, |
| 128 | + "outputs": [], |
| 129 | + "source": [ |
| 130 | + "import time\n", |
| 131 | + "import ignite.distributed as idist\n", |
| 132 | + "\n", |
| 133 | + "from ignite.engine import Engine, Events\n", |
| 134 | + "from ignite.utils import setup_logger, logging\n", |
| 135 | + "\n", |
| 136 | + "\n", |
| 137 | + "def pprint(*args, **kwargs):\n", |
| 138 | + " rank = idist.get_rank()\n", |
| 139 | + " time.sleep(rank * 0.1)\n", |
| 140 | + " print(f\"Rank {rank}:\", end=\" \")\n", |
| 141 | + " print(*args, **kwargs)\n", |
| 142 | + "\n", |
| 143 | + "\n", |
| 144 | + "def run(local_rank): \n", |
| 145 | + " rank = idist.get_rank() \n", |
| 146 | + " torch.manual_seed(12 + rank)\n", |
| 147 | + " \n", |
| 148 | + " train_data = range(10)\n", |
| 149 | + " eval_data = range(4)\n", |
| 150 | + " max_epochs = 5\n", |
| 151 | + "\n", |
| 152 | + " def train_step(engine, batch):\n", |
| 153 | + " pprint(f\"{engine.state.epoch} / {engine.state.max_epochs} | {engine.state.iteration} - batch: {batch}\", flush=True)\n", |
| 154 | + "\n", |
| 155 | + " trainer = Engine(train_step)\n", |
| 156 | + " \n", |
| 157 | + " @trainer.on(Events.EPOCH_COMPLETED)\n", |
| 158 | + " def sync():\n", |
| 159 | + " idist.barrier()\n", |
| 160 | + "\n", |
| 161 | + " trainer.run(train_data, max_epochs=max_epochs) \n", |
| 162 | + " \n", |
| 163 | + " \n", |
| 164 | + "idist.spawn(\"gloo\", run, (), nproc_per_node=2) " |
| 165 | + ] |
| 166 | + }, |
34 | 167 | { |
35 | 168 | "cell_type": "code", |
36 | 169 | "execution_count": null, |
|
0 commit comments