|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 3, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import numpy as np\n", |
| 10 | + "\n", |
| 11 | + "class HMM(object):\n", |
| 12 | + " def __init__(self, N, M, pi=None, A=None, B=None):\n", |
| 13 | + " # 可能的状态数\n", |
| 14 | + " self.N = N\n", |
| 15 | + " # 可能的观测数\n", |
| 16 | + " self.M = M\n", |
| 17 | + " # 初始状态概率向量\n", |
| 18 | + " self.pi = pi\n", |
| 19 | + " # 状态转移概率矩阵\n", |
| 20 | + " self.A = A\n", |
| 21 | + " # 观测概率矩阵\n", |
| 22 | + " self.B = B\n", |
| 23 | + "\n", |
| 24 | + " # 根据给定的概率分布随机返回数据\n", |
| 25 | + " def rdistribution(self, dist): \n", |
| 26 | + " r = np.random.rand()\n", |
| 27 | + " for ix, p in enumerate(dist):\n", |
| 28 | + " if r < p: \n", |
| 29 | + " return ix\n", |
| 30 | + " r -= p\n", |
| 31 | + "\n", |
| 32 | + " # 生成HMM观测序列\n", |
| 33 | + " def generate(self, T):\n", |
| 34 | + " # 根据初始概率分布生成第一个状态\n", |
| 35 | + " i = self.rdistribution(self.pi) \n", |
| 36 | + " # 生成第一个观测数据\n", |
| 37 | + " o = self.rdistribution(self.B[i]) \n", |
| 38 | + " observed_data = [o]\n", |
| 39 | + " # 遍历生成剩下的状态和观测数据\n", |
| 40 | + " for _ in range(T-1): \n", |
| 41 | + " i = self.rdistribution(self.A[i])\n", |
| 42 | + " o = self.rdistribution(self.B[i])\n", |
| 43 | + " observed_data.append(o)\n", |
| 44 | + " return observed_data" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": 4, |
| 50 | + "metadata": {}, |
| 51 | + "outputs": [ |
| 52 | + { |
| 53 | + "name": "stdout", |
| 54 | + "output_type": "stream", |
| 55 | + "text": [ |
| 56 | + "[1, 0, 0, 1, 0]\n" |
| 57 | + ] |
| 58 | + } |
| 59 | + ], |
| 60 | + "source": [ |
| 61 | + "pi = np.array([0.25, 0.25, 0.25, 0.25])\n", |
| 62 | + "A = np.array([\n", |
| 63 | + " [0, 1, 0, 0],\n", |
| 64 | + " [0.4, 0, 0.6, 0],\n", |
| 65 | + " [0, 0.4, 0, 0.6],\n", |
| 66 | + " [0, 0, 0.5, 0.5]])\n", |
| 67 | + "B = np.array([\n", |
| 68 | + " [0.5, 0.5],\n", |
| 69 | + " [0.6, 0.4],\n", |
| 70 | + " [0.2, 0.8],\n", |
| 71 | + " [0.3, 0.7]])\n", |
| 72 | + "hmm = HMM(4, 2, pi, A, B)\n", |
| 73 | + "print(hmm.generate(5))" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": 5, |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [ |
| 81 | + { |
| 82 | + "name": "stdout", |
| 83 | + "output_type": "stream", |
| 84 | + "text": [ |
| 85 | + "0.01983169125\n" |
| 86 | + ] |
| 87 | + } |
| 88 | + ], |
| 89 | + "source": [ |
| 90 | + "### 前向算法计算条件概率\n", |
| 91 | + "def prob_calc(O):\n", |
| 92 | + " '''\n", |
| 93 | + " 输入:\n", |
| 94 | + " O:观测序列\n", |
| 95 | + " 输出:\n", |
| 96 | + " alpha.sum():条件概率\n", |
| 97 | + " '''\n", |
| 98 | + " # 初值\n", |
| 99 | + " alpha = pi * B[:, O[0]]\n", |
| 100 | + " # 递推\n", |
| 101 | + " for o in O[1:]:\n", |
| 102 | + " alpha = np.sum(A * alpha.reshape(-1,1) * B[:,o].reshape(1,-1), axis=0)\n", |
| 103 | + " return alpha.sum()\n", |
| 104 | + "\n", |
| 105 | + "# 给定观测\n", |
| 106 | + "O = [1,0,1,0,0]\n", |
| 107 | + "print(prob_calc(O))" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": 6, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [ |
| 115 | + { |
| 116 | + "name": "stdout", |
| 117 | + "output_type": "stream", |
| 118 | + "text": [ |
| 119 | + "0.01983169125\n" |
| 120 | + ] |
| 121 | + } |
| 122 | + ], |
| 123 | + "source": [ |
| 124 | + "### 前向算法计算条件概率\n", |
| 125 | + "def prob_calc(O):\n", |
| 126 | + " '''\n", |
| 127 | + " 输入:\n", |
| 128 | + " O:观测序列\n", |
| 129 | + " 输出:\n", |
| 130 | + " alpha.sum():条件概率\n", |
| 131 | + " '''\n", |
| 132 | + " # 初值\n", |
| 133 | + " alpha = pi * B[:, O[0]]\n", |
| 134 | + " # 递推\n", |
| 135 | + " for o in O[1:]:\n", |
| 136 | + " alpha_next = np.empty(4)\n", |
| 137 | + " for j in range(4):\n", |
| 138 | + " alpha_next[j] = np.sum(A[:,j] * alpha * B[j,o])\n", |
| 139 | + " alpha = alpha_next\n", |
| 140 | + " return alpha.sum()\n", |
| 141 | + "\n", |
| 142 | + "# 给定观测\n", |
| 143 | + "O = [1,0,1,0,0]\n", |
| 144 | + "print(prob_calc(O))" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": 7, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [ |
| 152 | + { |
| 153 | + "name": "stdout", |
| 154 | + "output_type": "stream", |
| 155 | + "text": [ |
| 156 | + "[0, 1, 2, 3, 3]\n" |
| 157 | + ] |
| 158 | + } |
| 159 | + ], |
| 160 | + "source": [ |
| 161 | + "### 序列标注问题和维特比算法\n", |
| 162 | + "def viterbi_decode(O):\n", |
| 163 | + " '''\n", |
| 164 | + " 输入:\n", |
| 165 | + " O:观测序列\n", |
| 166 | + " 输出:\n", |
| 167 | + " path:最优隐状态路径\n", |
| 168 | + " ''' \n", |
| 169 | + " # 序列长度和初始观测\n", |
| 170 | + " T, o = len(O), O[0]\n", |
| 171 | + " # 初始化delta变量\n", |
| 172 | + " delta = pi * B[:, o]\n", |
| 173 | + " # 初始化varphi变量\n", |
| 174 | + " varphi = np.zeros((T, 4), dtype=int)\n", |
| 175 | + " path = [0] * T\n", |
| 176 | + " # 递推\n", |
| 177 | + " for i in range(1, T):\n", |
| 178 | + " delta = delta.reshape(-1, 1) \n", |
| 179 | + " tmp = delta * A\n", |
| 180 | + " varphi[i, :] = np.argmax(tmp, axis=0)\n", |
| 181 | + " delta = np.max(tmp, axis=0) * B[:, O[i]]\n", |
| 182 | + " # 终止\n", |
| 183 | + " path[-1] = np.argmax(delta)\n", |
| 184 | + " # 回溯最优路径\n", |
| 185 | + " for i in range(T-1, 0, -1):\n", |
| 186 | + " path[i-1] = varphi[i, path[i]]\n", |
| 187 | + " return path\n", |
| 188 | + "\n", |
| 189 | + "# 给定观测序列\n", |
| 190 | + "O = [1,0,1,1,0]\n", |
| 191 | + "print(viterbi_decode(O))" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": null, |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [], |
| 199 | + "source": [] |
| 200 | + } |
| 201 | + ], |
| 202 | + "metadata": { |
| 203 | + "kernelspec": { |
| 204 | + "display_name": "Python 3", |
| 205 | + "language": "python", |
| 206 | + "name": "python3" |
| 207 | + }, |
| 208 | + "language_info": { |
| 209 | + "codemirror_mode": { |
| 210 | + "name": "ipython", |
| 211 | + "version": 3 |
| 212 | + }, |
| 213 | + "file_extension": ".py", |
| 214 | + "mimetype": "text/x-python", |
| 215 | + "name": "python", |
| 216 | + "nbconvert_exporter": "python", |
| 217 | + "pygments_lexer": "ipython3", |
| 218 | + "version": "3.7.3" |
| 219 | + }, |
| 220 | + "toc": { |
| 221 | + "base_numbering": 1, |
| 222 | + "nav_menu": {}, |
| 223 | + "number_sections": true, |
| 224 | + "sideBar": true, |
| 225 | + "skip_h1_title": false, |
| 226 | + "title_cell": "Table of Contents", |
| 227 | + "title_sidebar": "Contents", |
| 228 | + "toc_cell": false, |
| 229 | + "toc_position": {}, |
| 230 | + "toc_section_display": true, |
| 231 | + "toc_window_display": false |
| 232 | + } |
| 233 | + }, |
| 234 | + "nbformat": 4, |
| 235 | + "nbformat_minor": 2 |
| 236 | +} |
0 commit comments