Skip to content

Commit 09aee17

Browse files
committed
test
1 parent 2458c92 commit 09aee17

File tree

2 files changed

+135
-3
lines changed

2 files changed

+135
-3
lines changed

configs/apps/trans_drone/full_segformer_mit-b5_640x640_160k_td.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@
126126
power=1.0,
127127
min_lr=0.0,
128128
by_epoch=False)
129-
runner = dict(type='IterBasedRunner', max_iters=10000)
130-
checkpoint_config = dict(by_epoch=False, interval=1000)
131-
evaluation = dict(interval=1000, metric='mIoU', pre_eval=True)
129+
runner = dict(type='IterBasedRunner', max_iters=40000)
130+
checkpoint_config = dict(by_epoch=False, interval=4000)
131+
evaluation = dict(interval=4000, metric='mIoU', pre_eval=True)
132132
work_dir = data_root+'work_dirs/full_segformer_mit-b5_640x640_160k_td_nbg_640/'
Lines changed: 132 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,132 @@
1+
from PIL.Image import TRANSPOSE
2+
3+
4+
norm_cfg = dict(type='SyncBN', requires_grad=True)
5+
num_classes = 3
6+
dataset_type = 'TDDataset'
7+
data_root = 'data/td/'
8+
img_norm_cfg = dict(
9+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
10+
#crop_size = (640, 640)
11+
#img_scale = (2048, 640)
12+
img_scale = (960, 540)
13+
#img_scale = (640, 640)
14+
keep_ratio = True
15+
model = dict(
16+
type='EncoderDecoder',
17+
pretrained='pretrain/mit_b5.pth',
18+
backbone=dict(
19+
type='MixVisionTransformer',
20+
in_channels=3,
21+
embed_dims=64,
22+
num_stages=4,
23+
num_layers=[3, 6, 40, 3],
24+
num_heads=[1, 2, 5, 8],
25+
patch_sizes=[7, 3, 3, 3],
26+
sr_ratios=[8, 4, 2, 1],
27+
out_indices=(0, 1, 2, 3),
28+
mlp_ratio=4,
29+
qkv_bias=True,
30+
drop_rate=0.0,
31+
attn_drop_rate=0.0,
32+
drop_path_rate=0.1),
33+
decode_head=dict(
34+
type='SegformerHead',
35+
in_channels=[64, 128, 320, 512],
36+
in_index=[0, 1, 2, 3],
37+
channels=256,
38+
dropout_ratio=0.1,
39+
num_classes=num_classes,
40+
norm_cfg=dict(type='SyncBN', requires_grad=True),
41+
align_corners=False,
42+
loss_decode=dict(
43+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
44+
train_cfg=dict(),
45+
test_cfg=dict(mode='whole'))
46+
47+
train_pipeline = [
48+
dict(type='LoadImageFromFile'),
49+
dict(type='LoadAnnotations'),
50+
dict(type='Resize', img_scale=img_scale, keep_ratio=keep_ratio),
51+
#dict(type='RandomCrop', crop_size=(640, 640), cat_max_ratio=0.75),
52+
dict(type='RandomFlip', prob=0.5),
53+
dict(type='PhotoMetricDistortion'),
54+
dict(
55+
type='Normalize',
56+
mean=[123.675, 116.28, 103.53],
57+
std=[58.395, 57.12, 57.375],
58+
to_rgb=True),
59+
#dict(type='Pad', size=(640, 640), pad_val=0, seg_pad_val=255),
60+
dict(type='DefaultFormatBundle'),
61+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
62+
]
63+
test_pipeline = [
64+
dict(type='LoadImageFromFile'),
65+
dict(
66+
type='MultiScaleFlipAug',
67+
img_scale=img_scale,
68+
flip=False,
69+
transforms=[
70+
dict(type='Resize', keep_ratio=keep_ratio),
71+
dict(type='RandomFlip'),
72+
dict(
73+
type='Normalize',
74+
mean=[123.675, 116.28, 103.53],
75+
std=[58.395, 57.12, 57.375],
76+
to_rgb=True),
77+
dict(type='ImageToTensor', keys=['img']),
78+
dict(type='Collect', keys=['img'])
79+
])
80+
]
81+
data = dict(
82+
samples_per_gpu=1,
83+
workers_per_gpu=1,
84+
train=dict(
85+
type=dataset_type,
86+
data_root=data_root,
87+
img_dir='images',
88+
ann_dir='annotations/train_AW.json',
89+
pipeline=train_pipeline),
90+
val=dict(
91+
type=dataset_type,
92+
data_root=data_root,
93+
img_dir='images',
94+
ann_dir='annotations/test_AW.json',
95+
pipeline=test_pipeline),
96+
test=dict(
97+
type=dataset_type,
98+
data_root=data_root,
99+
img_dir='images',
100+
ann_dir='annotations/test_AW.json',
101+
pipeline=test_pipeline))
102+
log_config = dict(
103+
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
104+
dist_params = dict(backend='nccl')
105+
log_level = 'INFO'
106+
load_from = None
107+
resume_from = None
108+
workflow = [('train', 1)]
109+
cudnn_benchmark = True
110+
optimizer = dict(
111+
type='AdamW',
112+
lr=6e-06,
113+
betas=(0.9, 0.999),
114+
weight_decay=0.01,
115+
paramwise_cfg=dict(
116+
custom_keys=dict(
117+
pos_block=dict(decay_mult=0.0),
118+
norm=dict(decay_mult=0.0),
119+
head=dict(lr_mult=10.0))))
120+
optimizer_config = dict()
121+
lr_config = dict(
122+
policy='poly',
123+
warmup='linear',
124+
warmup_iters=3200,
125+
warmup_ratio=1e-06,
126+
power=1.0,
127+
min_lr=0.0,
128+
by_epoch=False)
129+
runner = dict(type='IterBasedRunner', max_iters=40000)
130+
checkpoint_config = dict(by_epoch=False, interval=4000)
131+
evaluation = dict(interval=4000, metric='mIoU', pre_eval=True)
132+
work_dir = data_root+'work_dirs/full_segformer_mit-b5_640x640_160k_td_nbg_960/'

0 commit comments

Comments
 (0)