Skip to content

Commit e13676f

Browse files
author
popo
committed
fix typos in python/README.
1 parent 38c9dd4 commit e13676f

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

python/README

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ in liblinearutil.py and the usage is the same as the LIBLINEAR MATLAB interface.
6363
>>> save_model('heart_scale.model', m)
6464
>>> m = load_model('heart_scale.model')
6565
>>> p_label, p_acc, p_val = predict(y, x, m, '-b 1')
66-
>>> ACC, MSE, SCC = evaluations(y, p_val)
66+
>>> ACC, MSE, SCC = evaluations(y, p_label)
6767

6868
# Getting online help
6969
>>> help(train)
@@ -76,7 +76,7 @@ carefully.
7676
>>> prob = problem([1,-1], [{1:1, 3:1}, {1:-1,3:-1}])
7777
>>> param = parameter('-c 4')
7878
>>> m = liblinear.train(prob, param) # m is a ctype pointer to a model
79-
# Convet a Python-fromat instance to feature_nodearray, a ctypes structure
79+
# Convert a Python-format instance to feature_nodearray, a ctypes structure
8080
>>> x0, max_idx = gen_feature_nodearray({1:1, 3:1})
8181
>>> label = liblinear.predict(m, x0)
8282

@@ -110,7 +110,7 @@ LIBLINEAR shared library:
110110

111111
- class feature_node:
112112

113-
Construct an feature_node.
113+
Construct a feature_node.
114114

115115
>>> node = feature_node(idx, val)
116116

@@ -136,9 +136,9 @@ LIBLINEAR shared library:
136136

137137
- class problem:
138138

139-
Construct an problem instance
139+
Construct a problem instance
140140

141-
>>> prob = problem(y, x, [bias=-1])
141+
>>> prob = problem(y, x [,bias=-1])
142142

143143
y: a Python list/tuple of l labels (type must be int/double).
144144

@@ -148,7 +148,7 @@ LIBLINEAR shared library:
148148
bias: if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term
149149
added (default -1)
150150

151-
You can alos modify the bias value by
151+
You can also modify the bias value by
152152

153153
>>> prob.set_bias(1)
154154

@@ -157,7 +157,7 @@ LIBLINEAR shared library:
157157

158158
- class parameter:
159159

160-
Construct an parameter instance
160+
Construct a parameter instance
161161

162162
>>> param = parameter('training_options')
163163

@@ -210,7 +210,7 @@ To use utility functions, type
210210
>>> from liblinearutil import *
211211

212212
The above command loads
213-
train() : train an linear model
213+
train() : train a linear model
214214
predict() : predict testing data
215215
svm_read_problem() : read the data from a LIBSVM-format file.
216216
load_model() : load a LIBLINEAR model.
@@ -233,10 +233,10 @@ The above command loads
233233
training_options: a string in the same form as that for LIBLINEAR command
234234
mode.
235235

236-
prob: an problem instance generated by calling
236+
prob: a problem instance generated by calling
237237
problem(y, x).
238238

239-
param: an parameter instance generated by calling
239+
param: a parameter instance generated by calling
240240
parameter('training_options')
241241

242242
model: the returned model instance. See linear.h for details of this
@@ -273,7 +273,7 @@ The above command loads
273273
predicting_options: a string of predicting options in the same format as
274274
that of LIBLINEAR.
275275

276-
model: an model instance.
276+
model: a model instance.
277277

278278
p_labels: a list of predicted labels
279279

@@ -284,7 +284,7 @@ The above command loads
284284
p_vals: a list of decision values or probability estimates (if '-b 1'
285285
is specified). If k is the number of classes, for decision values,
286286
each element includes results of predicting k binary-class
287-
SVMs. if k = 2 and solver is not MCSVM_CS, only one decision value
287+
SVMs. If k = 2 and solver is not MCSVM_CS, only one decision value
288288
is returned. For probabilities, each element contains k values
289289
indicating the probability that the testing instance is in each class.
290290
Note that the order of classes here is the same as 'model.label'

0 commit comments

Comments
 (0)