-
Notifications
You must be signed in to change notification settings - Fork 775
Description
AttributeError Traceback (most recent call last)
in ()
190
191 if name == 'main':
--> 192 mnist_dcgan = MNIST_DCGAN()
193 timer = ElapsedTimer()
194 mnist_dcgan.train(train_steps=10000, batch_size=256, save_interval=500)
in init(self)
135
136 self.DCGAN = DCGAN()
--> 137 self.discriminator = self.DCGAN.discriminator_model()
138 self.adversarial = self.DCGAN.adversarial_model()
139 self.generator = self.DCGAN.generator()
in discriminator_model(self)
111 optimizer = RMSprop(lr=0.0002, decay=6e-8)
112 self.DM = Sequential()
--> 113 self.DM.add(self.discriminator())
114 self.DM.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
115 return self.DM
in discriminator(self)
47 input_shape = (self.img_rows, self.img_cols, self.channel)
48 self.D.add(Conv2D(depth*1, 5, strides=2, input_shape=input_shape, padding='same'))
---> 49 self.D.add(LeakyReLU(alpha=0.2))
50 self.D.add(Dropout(dropout))
51
E:\Anaconda3\envs\python35\lib\site-packages\keras\models.py in add(self, layer)
490 output_shapes=[self.outputs[0]._keras_shape])
491 else:
--> 492 output_tensor = layer(self.outputs[0])
493 if isinstance(output_tensor, list):
494 raise TypeError('All layers in a Sequential model '
E:\Anaconda3\envs\python35\lib\site-packages\keras\engine\topology.py in call(self, inputs, **kwargs)
617
618 # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 619 output = self.call(inputs, **kwargs)
620 output_mask = self.compute_mask(inputs, previous_mask)
621
E:\Anaconda3\envs\python35\lib\site-packages\keras\layers\advanced_activations.py in call(self, inputs)
44
45 def call(self, inputs):
---> 46 return K.relu(inputs, alpha=self.alpha)
47
48 def get_config(self):
E:\Anaconda3\envs\python35\lib\site-packages\keras\backend\tensorflow_backend.py in relu(x, alpha, max_value)
2919 """
2920 if alpha != 0.:
-> 2921 x = tf.nn.leaky_relu(x, alpha)
2922 else:
2923 x = tf.nn.relu(x)