Skip to content

Commit 711fae1

Browse files
authored
Create README.md for semantic segmentation
1 parent 0935300 commit 711fae1

File tree

1 file changed

+32
-0
lines changed

1 file changed

+32
-0
lines changed
Lines changed: 32 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,32 @@
1+
# ABTF Semantic Segmentation Benchmark
2+
3+
This is the reference implementation for the ABTF semantic segmentation benchmark. The reference uses ONNX as a backend. A pytorch implementation is provided as well.
4+
5+
| model | accuracy | dataset | model source | precision |
6+
| ---- | ---- | ---- | ---- | ---- |
7+
| DeepLabv3+ | TBD | Cognata | https://github.com/rod409/pp/tree/main/deeplabv3plus | fp32 |
8+
9+
## Downloading the dataset and model checkpoints
10+
Contact [MLCommons](https://mlcommons.org/datasets/cognata) to access the cognata dataset. Access requires MLCommons membership and signing the EULA. The dataset download also contains the DeepLabv3+ onnx and pytorch model checkpoints.
11+
After downloading the datasets extract the compressed files.
12+
13+
You will need to perform some dataset preprocessing for segmentation. Follow the instructions on the [source repo](https://github.com/rod409/pp/tree/main/deeplabv3plus) to process the dataset.
14+
15+
> [!Note]
16+
> Providing preprocessed data is in progress.
17+
18+
## Build and run the Docker container
19+
```
20+
git clone -b v0.5abtf [email protected]:rod409/inference.git
21+
cd inference/automotive/semantic-segmentation
22+
docker build -t deeplab_inference .
23+
docker run -it -v ./inference:/inference -v <path to cognata>:/cognata deeplab_inference
24+
```
25+
## Run the model in performance mode
26+
```
27+
python main.py --backend onnx --checkpoint /cognata/deeplabv3+.onnx --dataset-path /cognata/ --dataset cognata
28+
```
29+
## Run the model in accuracy mode and run the accuracy checker
30+
```
31+
python main.py --backend onnx --checkpoint /cognata/deeplabv3+.onnx --dataset-path /cognata/ --dataset cognata --accuracy
32+
python accuracy_cognata.py --mlperf-accuracy-file ./output/mlperf_log_accuracy.json --dataset-path /Documents/research/datasets/cognata/

0 commit comments

Comments
 (0)