|
92 | 92 | "callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)\n", |
93 | 93 | "\n", |
94 | 94 | "def create_model(passengers):\n", |
95 | | - " input_layer = Input(shape=(LOOKBACK, 1))\n", |
96 | | - " recurrent = Bidirectional(LSTM(20, activation=\"relu\"))(input_layer)\n", |
97 | | - " output_layer = Dense(1)(recurrent)\n", |
98 | | - " model = keras.models.Model(inputs=input_layer, outputs=output_layer)\n", |
99 | | - " model.compile(loss='mse', optimizer=keras.optimizers.Adagrad(),\n", |
100 | | - " metrics=[keras.metrics.RootMeanSquaredError(), keras.metrics.MeanAbsoluteError()])\n", |
101 | | - " return model\n", |
| 95 | + " input_layer = Input(shape=(LOOKBACK, 1))\n", |
| 96 | + " recurrent = Bidirectional(LSTM(20, activation=\"tanh\"))(input_layer)\n", |
| 97 | + " output_layer = Dense(1)(recurrent)\n", |
| 98 | + " model = keras.models.Model(inputs=input_layer, outputs=output_layer)\n", |
| 99 | + " model.compile(\n", |
| 100 | + " loss='mse', optimizer=keras.optimizers.Adagrad(),\n", |
| 101 | + " metrics=[\n", |
| 102 | + " keras.metrics.RootMeanSquaredError(),\n", |
| 103 | + " keras.metrics.MeanAbsoluteError()\n", |
| 104 | + " ])\n", |
| 105 | + " return model\n", |
102 | 106 | "\n", |
103 | 107 | "model = create_model(passengers)" |
104 | 108 | ] |
|
0 commit comments