Skip to content

Commit 33108bf

Browse files
Correct VQDiffusion Pipeline import
1 parent 118c5be commit 33108bf

File tree

8 files changed

+445
-16
lines changed

8 files changed

+445
-16
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,324 @@
1+
import inspect
2+
from typing import List, Optional, Union
3+
4+
import torch
5+
from torch import nn
6+
from torch.nn import functional as F
7+
8+
from diffusers import AutoencoderKL, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
9+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
10+
from torchvision import transforms
11+
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
12+
13+
14+
class MakeCutouts(nn.Module):
15+
def __init__(self, cut_size, cut_power=1.0):
16+
super().__init__()
17+
18+
self.cut_size = cut_size
19+
self.cut_power = cut_power
20+
21+
def forward(self, pixel_values, num_cutouts):
22+
sideY, sideX = pixel_values.shape[2:4]
23+
max_size = min(sideX, sideY)
24+
min_size = min(sideX, sideY, self.cut_size)
25+
cutouts = []
26+
for _ in range(num_cutouts):
27+
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
28+
offsetx = torch.randint(0, sideX - size + 1, ())
29+
offsety = torch.randint(0, sideY - size + 1, ())
30+
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
31+
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
32+
return torch.cat(cutouts)
33+
34+
35+
def spherical_dist_loss(x, y):
36+
x = F.normalize(x, dim=-1)
37+
y = F.normalize(y, dim=-1)
38+
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
39+
40+
41+
def set_requires_grad(model, value):
42+
for param in model.parameters():
43+
param.requires_grad = value
44+
45+
46+
class CLIPGuidedStableDiffusion(DiffusionPipeline):
47+
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
48+
- https://github.com/Jack000/glid-3-xl
49+
- https://github.dev/crowsonkb/k-diffusion
50+
"""
51+
52+
def __init__(
53+
self,
54+
vae: AutoencoderKL,
55+
text_encoder: CLIPTextModel,
56+
clip_model: CLIPModel,
57+
tokenizer: CLIPTokenizer,
58+
unet: UNet2DConditionModel,
59+
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler],
60+
feature_extractor: CLIPFeatureExtractor,
61+
):
62+
super().__init__()
63+
self.register_modules(
64+
vae=vae,
65+
text_encoder=text_encoder,
66+
clip_model=clip_model,
67+
tokenizer=tokenizer,
68+
unet=unet,
69+
scheduler=scheduler,
70+
feature_extractor=feature_extractor,
71+
)
72+
73+
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
74+
self.make_cutouts = MakeCutouts(feature_extractor.size)
75+
76+
set_requires_grad(self.text_encoder, False)
77+
set_requires_grad(self.clip_model, False)
78+
79+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
80+
if slice_size == "auto":
81+
# half the attention head size is usually a good trade-off between
82+
# speed and memory
83+
slice_size = self.unet.config.attention_head_dim // 2
84+
self.unet.set_attention_slice(slice_size)
85+
86+
def disable_attention_slicing(self):
87+
self.enable_attention_slicing(None)
88+
89+
def freeze_vae(self):
90+
set_requires_grad(self.vae, False)
91+
92+
def unfreeze_vae(self):
93+
set_requires_grad(self.vae, True)
94+
95+
def freeze_unet(self):
96+
set_requires_grad(self.unet, False)
97+
98+
def unfreeze_unet(self):
99+
set_requires_grad(self.unet, True)
100+
101+
@torch.enable_grad()
102+
def cond_fn(
103+
self,
104+
latents,
105+
timestep,
106+
index,
107+
text_embeddings,
108+
noise_pred_original,
109+
text_embeddings_clip,
110+
clip_guidance_scale,
111+
num_cutouts,
112+
use_cutouts=True,
113+
):
114+
latents = latents.detach().requires_grad_()
115+
116+
if isinstance(self.scheduler, LMSDiscreteScheduler):
117+
sigma = self.scheduler.sigmas[index]
118+
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
119+
latent_model_input = latents / ((sigma**2 + 1) ** 0.5)
120+
else:
121+
latent_model_input = latents
122+
123+
# predict the noise residual
124+
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
125+
126+
if isinstance(self.scheduler, PNDMScheduler):
127+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
128+
beta_prod_t = 1 - alpha_prod_t
129+
# compute predicted original sample from predicted noise also called
130+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
131+
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
132+
133+
fac = torch.sqrt(beta_prod_t)
134+
sample = pred_original_sample * (fac) + latents * (1 - fac)
135+
elif isinstance(self.scheduler, LMSDiscreteScheduler):
136+
sigma = self.scheduler.sigmas[index]
137+
sample = latents - sigma * noise_pred
138+
else:
139+
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
140+
141+
sample = 1 / 0.18215 * sample
142+
image = self.vae.decode(sample).sample
143+
image = (image / 2 + 0.5).clamp(0, 1)
144+
145+
if use_cutouts:
146+
image = self.make_cutouts(image, num_cutouts)
147+
else:
148+
image = transforms.Resize(self.feature_extractor.size)(image)
149+
image = self.normalize(image).to(latents.dtype)
150+
151+
image_embeddings_clip = self.clip_model.get_image_features(image)
152+
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
153+
154+
if use_cutouts:
155+
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
156+
dists = dists.view([num_cutouts, sample.shape[0], -1])
157+
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
158+
else:
159+
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
160+
161+
grads = -torch.autograd.grad(loss, latents)[0]
162+
163+
if isinstance(self.scheduler, LMSDiscreteScheduler):
164+
latents = latents.detach() + grads * (sigma**2)
165+
noise_pred = noise_pred_original
166+
else:
167+
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
168+
return noise_pred, latents
169+
170+
@torch.no_grad()
171+
def __call__(
172+
self,
173+
prompt: Union[str, List[str]],
174+
height: Optional[int] = 512,
175+
width: Optional[int] = 512,
176+
num_inference_steps: Optional[int] = 50,
177+
guidance_scale: Optional[float] = 7.5,
178+
num_images_per_prompt: Optional[int] = 1,
179+
clip_guidance_scale: Optional[float] = 100,
180+
clip_prompt: Optional[Union[str, List[str]]] = None,
181+
num_cutouts: Optional[int] = 4,
182+
use_cutouts: Optional[bool] = True,
183+
generator: Optional[torch.Generator] = None,
184+
latents: Optional[torch.FloatTensor] = None,
185+
output_type: Optional[str] = "pil",
186+
return_dict: bool = True,
187+
):
188+
if isinstance(prompt, str):
189+
batch_size = 1
190+
elif isinstance(prompt, list):
191+
batch_size = len(prompt)
192+
else:
193+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
194+
195+
if height % 8 != 0 or width % 8 != 0:
196+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
197+
198+
# get prompt text embeddings
199+
text_input = self.tokenizer(
200+
prompt,
201+
padding="max_length",
202+
max_length=self.tokenizer.model_max_length,
203+
truncation=True,
204+
return_tensors="pt",
205+
)
206+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
207+
# duplicate text embeddings for each generation per prompt
208+
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
209+
210+
if clip_guidance_scale > 0:
211+
if clip_prompt is not None:
212+
clip_text_input = self.tokenizer(
213+
clip_prompt,
214+
padding="max_length",
215+
max_length=self.tokenizer.model_max_length,
216+
truncation=True,
217+
return_tensors="pt",
218+
).input_ids.to(self.device)
219+
else:
220+
clip_text_input = text_input.input_ids.to(self.device)
221+
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
222+
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
223+
# duplicate text embeddings clip for each generation per prompt
224+
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
225+
226+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
227+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
228+
# corresponds to doing no classifier free guidance.
229+
do_classifier_free_guidance = guidance_scale > 1.0
230+
# get unconditional embeddings for classifier free guidance
231+
if do_classifier_free_guidance:
232+
max_length = text_input.input_ids.shape[-1]
233+
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
234+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
235+
# duplicate unconditional embeddings for each generation per prompt
236+
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
237+
238+
# For classifier free guidance, we need to do two forward passes.
239+
# Here we concatenate the unconditional and text embeddings into a single batch
240+
# to avoid doing two forward passes
241+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
242+
243+
# get the initial random noise unless the user supplied it
244+
245+
# Unlike in other pipelines, latents need to be generated in the target device
246+
# for 1-to-1 results reproducibility with the CompVis implementation.
247+
# However this currently doesn't work in `mps`.
248+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
249+
latents_dtype = text_embeddings.dtype
250+
if latents is None:
251+
if self.device.type == "mps":
252+
# randn does not work reproducibly on mps
253+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
254+
self.device
255+
)
256+
else:
257+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
258+
else:
259+
if latents.shape != latents_shape:
260+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
261+
latents = latents.to(self.device)
262+
263+
# set timesteps
264+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
265+
extra_set_kwargs = {}
266+
if accepts_offset:
267+
extra_set_kwargs["offset"] = 1
268+
269+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
270+
271+
# Some schedulers like PNDM have timesteps as arrays
272+
# It's more optimized to move all timesteps to correct device beforehand
273+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
274+
275+
# scale the initial noise by the standard deviation required by the scheduler
276+
latents = latents * self.scheduler.init_noise_sigma
277+
278+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
279+
# expand the latents if we are doing classifier free guidance
280+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
281+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
282+
283+
# predict the noise residual
284+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
285+
286+
# perform classifier free guidance
287+
if do_classifier_free_guidance:
288+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
289+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
290+
291+
# perform clip guidance
292+
if clip_guidance_scale > 0:
293+
text_embeddings_for_guidance = (
294+
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
295+
)
296+
noise_pred, latents = self.cond_fn(
297+
latents,
298+
t,
299+
i,
300+
text_embeddings_for_guidance,
301+
noise_pred,
302+
text_embeddings_clip,
303+
clip_guidance_scale,
304+
num_cutouts,
305+
use_cutouts,
306+
)
307+
308+
# compute the previous noisy sample x_t -> x_t-1
309+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
310+
311+
# scale and decode the image latents with vae
312+
latents = 1 / 0.18215 * latents
313+
image = self.vae.decode(latents).sample
314+
315+
image = (image / 2 + 0.5).clamp(0, 1)
316+
image = image.cpu().permute(0, 2, 3, 1).numpy()
317+
318+
if output_type == "pil":
319+
image = self.numpy_to_pil(image)
320+
321+
if not return_dict:
322+
return (image, None)
323+
324+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
{"url": "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/community/clip_guided_stable_diffusion.py", "etag": "W/\"3e4886ba6cb31f36f75ec5127cd691e562bb04d1f0ff257edbe1c182fd6a210a\""}

0 commit comments

Comments
 (0)