|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2022 HuggingFace Inc. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import gc |
| 17 | +import random |
| 18 | +import unittest |
| 19 | + |
| 20 | +import numpy as np |
| 21 | +import torch |
| 22 | + |
| 23 | +from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel |
| 24 | +from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( |
| 25 | + RobertaSeriesConfig, |
| 26 | + RobertaSeriesModelWithTransformation, |
| 27 | +) |
| 28 | +from diffusers.utils import floats_tensor, slow, torch_device |
| 29 | +from diffusers.utils.testing_utils import require_torch_gpu |
| 30 | +from transformers import XLMRobertaTokenizer |
| 31 | + |
| 32 | +from ...test_pipelines_common import PipelineTesterMixin |
| 33 | + |
| 34 | + |
| 35 | +torch.backends.cuda.matmul.allow_tf32 = False |
| 36 | + |
| 37 | + |
| 38 | +class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
| 39 | + def tearDown(self): |
| 40 | + # clean up the VRAM after each test |
| 41 | + super().tearDown() |
| 42 | + gc.collect() |
| 43 | + torch.cuda.empty_cache() |
| 44 | + |
| 45 | + @property |
| 46 | + def dummy_image(self): |
| 47 | + batch_size = 1 |
| 48 | + num_channels = 3 |
| 49 | + sizes = (32, 32) |
| 50 | + |
| 51 | + image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) |
| 52 | + return image |
| 53 | + |
| 54 | + @property |
| 55 | + def dummy_cond_unet(self): |
| 56 | + torch.manual_seed(0) |
| 57 | + model = UNet2DConditionModel( |
| 58 | + block_out_channels=(32, 64), |
| 59 | + layers_per_block=2, |
| 60 | + sample_size=32, |
| 61 | + in_channels=4, |
| 62 | + out_channels=4, |
| 63 | + down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
| 64 | + up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
| 65 | + cross_attention_dim=32, |
| 66 | + ) |
| 67 | + return model |
| 68 | + |
| 69 | + @property |
| 70 | + def dummy_cond_unet_inpaint(self): |
| 71 | + torch.manual_seed(0) |
| 72 | + model = UNet2DConditionModel( |
| 73 | + block_out_channels=(32, 64), |
| 74 | + layers_per_block=2, |
| 75 | + sample_size=32, |
| 76 | + in_channels=9, |
| 77 | + out_channels=4, |
| 78 | + down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
| 79 | + up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
| 80 | + cross_attention_dim=32, |
| 81 | + ) |
| 82 | + return model |
| 83 | + |
| 84 | + @property |
| 85 | + def dummy_vae(self): |
| 86 | + torch.manual_seed(0) |
| 87 | + model = AutoencoderKL( |
| 88 | + block_out_channels=[32, 64], |
| 89 | + in_channels=3, |
| 90 | + out_channels=3, |
| 91 | + down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
| 92 | + up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
| 93 | + latent_channels=4, |
| 94 | + ) |
| 95 | + return model |
| 96 | + |
| 97 | + @property |
| 98 | + def dummy_text_encoder(self): |
| 99 | + torch.manual_seed(0) |
| 100 | + config = RobertaSeriesConfig( |
| 101 | + hidden_size=32, |
| 102 | + project_dim=32, |
| 103 | + intermediate_size=37, |
| 104 | + layer_norm_eps=1e-05, |
| 105 | + num_attention_heads=4, |
| 106 | + num_hidden_layers=5, |
| 107 | + vocab_size=5002, |
| 108 | + ) |
| 109 | + return RobertaSeriesModelWithTransformation(config) |
| 110 | + |
| 111 | + @property |
| 112 | + def dummy_extractor(self): |
| 113 | + def extract(*args, **kwargs): |
| 114 | + class Out: |
| 115 | + def __init__(self): |
| 116 | + self.pixel_values = torch.ones([0]) |
| 117 | + |
| 118 | + def to(self, device): |
| 119 | + self.pixel_values.to(device) |
| 120 | + return self |
| 121 | + |
| 122 | + return Out() |
| 123 | + |
| 124 | + return extract |
| 125 | + |
| 126 | + def test_alt_diffusion_ddim(self): |
| 127 | + device = "cpu" # ensure determinism for the device-dependent torch.Generator |
| 128 | + unet = self.dummy_cond_unet |
| 129 | + scheduler = DDIMScheduler( |
| 130 | + beta_start=0.00085, |
| 131 | + beta_end=0.012, |
| 132 | + beta_schedule="scaled_linear", |
| 133 | + clip_sample=False, |
| 134 | + set_alpha_to_one=False, |
| 135 | + ) |
| 136 | + |
| 137 | + vae = self.dummy_vae |
| 138 | + bert = self.dummy_text_encoder |
| 139 | + tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") |
| 140 | + tokenizer.model_max_length = 77 |
| 141 | + |
| 142 | + # make sure here that pndm scheduler skips prk |
| 143 | + alt_pipe = AltDiffusionPipeline( |
| 144 | + unet=unet, |
| 145 | + scheduler=scheduler, |
| 146 | + vae=vae, |
| 147 | + text_encoder=bert, |
| 148 | + tokenizer=tokenizer, |
| 149 | + safety_checker=None, |
| 150 | + feature_extractor=self.dummy_extractor, |
| 151 | + ) |
| 152 | + alt_pipe = alt_pipe.to(device) |
| 153 | + alt_pipe.set_progress_bar_config(disable=None) |
| 154 | + |
| 155 | + prompt = "A photo of an astronaut" |
| 156 | + |
| 157 | + generator = torch.Generator(device=device).manual_seed(0) |
| 158 | + output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
| 159 | + image = output.images |
| 160 | + |
| 161 | + generator = torch.Generator(device=device).manual_seed(0) |
| 162 | + image_from_tuple = alt_pipe( |
| 163 | + [prompt], |
| 164 | + generator=generator, |
| 165 | + guidance_scale=6.0, |
| 166 | + num_inference_steps=2, |
| 167 | + output_type="np", |
| 168 | + return_dict=False, |
| 169 | + )[0] |
| 170 | + |
| 171 | + image_slice = image[0, -3:, -3:, -1] |
| 172 | + image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
| 173 | + |
| 174 | + assert image.shape == (1, 128, 128, 3) |
| 175 | + expected_slice = np.array( |
| 176 | + [0.49249017, 0.46064827, 0.4790093, 0.50883967, 0.4811985, 0.51540506, 0.5084924, 0.4860553, 0.47318557] |
| 177 | + ) |
| 178 | + |
| 179 | + assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
| 180 | + assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
| 181 | + |
| 182 | + def test_alt_diffusion_pndm(self): |
| 183 | + device = "cpu" # ensure determinism for the device-dependent torch.Generator |
| 184 | + unet = self.dummy_cond_unet |
| 185 | + scheduler = PNDMScheduler(skip_prk_steps=True) |
| 186 | + vae = self.dummy_vae |
| 187 | + bert = self.dummy_text_encoder |
| 188 | + tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") |
| 189 | + tokenizer.model_max_length = 77 |
| 190 | + |
| 191 | + # make sure here that pndm scheduler skips prk |
| 192 | + alt_pipe = AltDiffusionPipeline( |
| 193 | + unet=unet, |
| 194 | + scheduler=scheduler, |
| 195 | + vae=vae, |
| 196 | + text_encoder=bert, |
| 197 | + tokenizer=tokenizer, |
| 198 | + safety_checker=None, |
| 199 | + feature_extractor=self.dummy_extractor, |
| 200 | + ) |
| 201 | + alt_pipe = alt_pipe.to(device) |
| 202 | + alt_pipe.set_progress_bar_config(disable=None) |
| 203 | + |
| 204 | + prompt = "A painting of a squirrel eating a burger" |
| 205 | + generator = torch.Generator(device=device).manual_seed(0) |
| 206 | + output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") |
| 207 | + |
| 208 | + image = output.images |
| 209 | + |
| 210 | + generator = torch.Generator(device=device).manual_seed(0) |
| 211 | + image_from_tuple = alt_pipe( |
| 212 | + [prompt], |
| 213 | + generator=generator, |
| 214 | + guidance_scale=6.0, |
| 215 | + num_inference_steps=2, |
| 216 | + output_type="np", |
| 217 | + return_dict=False, |
| 218 | + )[0] |
| 219 | + |
| 220 | + image_slice = image[0, -3:, -3:, -1] |
| 221 | + image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
| 222 | + |
| 223 | + assert image.shape == (1, 128, 128, 3) |
| 224 | + expected_slice = np.array( |
| 225 | + [0.4786532, 0.45791715, 0.47507674, 0.50763345, 0.48375353, 0.515062, 0.51244247, 0.48673993, 0.47105807] |
| 226 | + ) |
| 227 | + assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
| 228 | + assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
| 229 | + |
| 230 | + @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") |
| 231 | + def test_alt_diffusion_fp16(self): |
| 232 | + """Test that stable diffusion works with fp16""" |
| 233 | + unet = self.dummy_cond_unet |
| 234 | + scheduler = PNDMScheduler(skip_prk_steps=True) |
| 235 | + vae = self.dummy_vae |
| 236 | + bert = self.dummy_text_encoder |
| 237 | + tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") |
| 238 | + tokenizer.model_max_length = 77 |
| 239 | + |
| 240 | + # put models in fp16 |
| 241 | + unet = unet.half() |
| 242 | + vae = vae.half() |
| 243 | + bert = bert.half() |
| 244 | + |
| 245 | + # make sure here that pndm scheduler skips prk |
| 246 | + alt_pipe = AltDiffusionPipeline( |
| 247 | + unet=unet, |
| 248 | + scheduler=scheduler, |
| 249 | + vae=vae, |
| 250 | + text_encoder=bert, |
| 251 | + tokenizer=tokenizer, |
| 252 | + safety_checker=None, |
| 253 | + feature_extractor=self.dummy_extractor, |
| 254 | + ) |
| 255 | + alt_pipe = alt_pipe.to(torch_device) |
| 256 | + alt_pipe.set_progress_bar_config(disable=None) |
| 257 | + |
| 258 | + prompt = "A painting of a squirrel eating a burger" |
| 259 | + generator = torch.Generator(device=torch_device).manual_seed(0) |
| 260 | + image = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="np").images |
| 261 | + |
| 262 | + assert image.shape == (1, 128, 128, 3) |
| 263 | + |
| 264 | + |
| 265 | +@slow |
| 266 | +@require_torch_gpu |
| 267 | +class AltDiffusionPipelineIntegrationTests(unittest.TestCase): |
| 268 | + def tearDown(self): |
| 269 | + # clean up the VRAM after each test |
| 270 | + super().tearDown() |
| 271 | + gc.collect() |
| 272 | + torch.cuda.empty_cache() |
| 273 | + |
| 274 | + def test_alt_diffusion(self): |
| 275 | + # make sure here that pndm scheduler skips prk |
| 276 | + alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None) |
| 277 | + alt_pipe = alt_pipe.to(torch_device) |
| 278 | + alt_pipe.set_progress_bar_config(disable=None) |
| 279 | + |
| 280 | + prompt = "A painting of a squirrel eating a burger" |
| 281 | + generator = torch.Generator(device=torch_device).manual_seed(0) |
| 282 | + with torch.autocast("cuda"): |
| 283 | + output = alt_pipe( |
| 284 | + [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np" |
| 285 | + ) |
| 286 | + |
| 287 | + image = output.images |
| 288 | + |
| 289 | + image_slice = image[0, -3:, -3:, -1] |
| 290 | + |
| 291 | + assert image.shape == (1, 512, 512, 3) |
| 292 | + expected_slice = np.array( |
| 293 | + [0.8720703, 0.87109375, 0.87402344, 0.87109375, 0.8779297, 0.8925781, 0.8823242, 0.8808594, 0.8613281] |
| 294 | + ) |
| 295 | + assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
| 296 | + |
| 297 | + def test_alt_diffusion_fast_ddim(self): |
| 298 | + scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler") |
| 299 | + |
| 300 | + alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None) |
| 301 | + alt_pipe = alt_pipe.to(torch_device) |
| 302 | + alt_pipe.set_progress_bar_config(disable=None) |
| 303 | + |
| 304 | + prompt = "A painting of a squirrel eating a burger" |
| 305 | + generator = torch.Generator(device=torch_device).manual_seed(0) |
| 306 | + |
| 307 | + with torch.autocast("cuda"): |
| 308 | + output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy") |
| 309 | + image = output.images |
| 310 | + |
| 311 | + image_slice = image[0, -3:, -3:, -1] |
| 312 | + |
| 313 | + assert image.shape == (1, 512, 512, 3) |
| 314 | + expected_slice = np.array( |
| 315 | + [0.9267578, 0.9301758, 0.9013672, 0.9345703, 0.92578125, 0.94433594, 0.9423828, 0.9423828, 0.9160156] |
| 316 | + ) |
| 317 | + assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
| 318 | + |
| 319 | + def test_alt_diffusion_text2img_pipeline_fp16(self): |
| 320 | + torch.cuda.reset_peak_memory_stats() |
| 321 | + model_id = "BAAI/AltDiffusion" |
| 322 | + pipe = AltDiffusionPipeline.from_pretrained( |
| 323 | + model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None |
| 324 | + ) |
| 325 | + pipe = pipe.to(torch_device) |
| 326 | + pipe.set_progress_bar_config(disable=None) |
| 327 | + |
| 328 | + prompt = "a photograph of an astronaut riding a horse" |
| 329 | + |
| 330 | + generator = torch.Generator(device=torch_device).manual_seed(0) |
| 331 | + output_chunked = pipe( |
| 332 | + [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" |
| 333 | + ) |
| 334 | + image_chunked = output_chunked.images |
| 335 | + |
| 336 | + generator = torch.Generator(device=torch_device).manual_seed(0) |
| 337 | + with torch.autocast(torch_device): |
| 338 | + output = pipe( |
| 339 | + [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy" |
| 340 | + ) |
| 341 | + image = output.images |
| 342 | + |
| 343 | + # Make sure results are close enough |
| 344 | + diff = np.abs(image_chunked.flatten() - image.flatten()) |
| 345 | + # They ARE different since ops are not run always at the same precision |
| 346 | + # however, they should be extremely close. |
| 347 | + assert diff.mean() < 2e-2 |
0 commit comments