|
| 1 | +# Copyright 2022 The HuggingFace Team. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | + |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | + |
| 17 | +from typing import Optional, Tuple, Union |
| 18 | + |
| 19 | +import torch |
| 20 | + |
| 21 | +from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
| 22 | + |
| 23 | + |
| 24 | +class CustomLocalPipeline(DiffusionPipeline): |
| 25 | + r""" |
| 26 | + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
| 27 | + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
| 28 | +
|
| 29 | + Parameters: |
| 30 | + unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. |
| 31 | + scheduler ([`SchedulerMixin`]): |
| 32 | + A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of |
| 33 | + [`DDPMScheduler`], or [`DDIMScheduler`]. |
| 34 | + """ |
| 35 | + |
| 36 | + def __init__(self, unet, scheduler): |
| 37 | + super().__init__() |
| 38 | + self.register_modules(unet=unet, scheduler=scheduler) |
| 39 | + |
| 40 | + @torch.no_grad() |
| 41 | + def __call__( |
| 42 | + self, |
| 43 | + batch_size: int = 1, |
| 44 | + generator: Optional[torch.Generator] = None, |
| 45 | + num_inference_steps: int = 50, |
| 46 | + output_type: Optional[str] = "pil", |
| 47 | + return_dict: bool = True, |
| 48 | + **kwargs, |
| 49 | + ) -> Union[ImagePipelineOutput, Tuple]: |
| 50 | + r""" |
| 51 | + Args: |
| 52 | + batch_size (`int`, *optional*, defaults to 1): |
| 53 | + The number of images to generate. |
| 54 | + generator (`torch.Generator`, *optional*): |
| 55 | + A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
| 56 | + deterministic. |
| 57 | + eta (`float`, *optional*, defaults to 0.0): |
| 58 | + The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). |
| 59 | + num_inference_steps (`int`, *optional*, defaults to 50): |
| 60 | + The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
| 61 | + expense of slower inference. |
| 62 | + output_type (`str`, *optional*, defaults to `"pil"`): |
| 63 | + The output format of the generate image. Choose between |
| 64 | + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
| 65 | + return_dict (`bool`, *optional*, defaults to `True`): |
| 66 | + Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. |
| 67 | +
|
| 68 | + Returns: |
| 69 | + [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if |
| 70 | + `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the |
| 71 | + generated images. |
| 72 | + """ |
| 73 | + |
| 74 | + # Sample gaussian noise to begin loop |
| 75 | + image = torch.randn( |
| 76 | + (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size), |
| 77 | + generator=generator, |
| 78 | + ) |
| 79 | + image = image.to(self.device) |
| 80 | + |
| 81 | + # set step values |
| 82 | + self.scheduler.set_timesteps(num_inference_steps) |
| 83 | + |
| 84 | + for t in self.progress_bar(self.scheduler.timesteps): |
| 85 | + # 1. predict noise model_output |
| 86 | + model_output = self.unet(image, t).sample |
| 87 | + |
| 88 | + # 2. predict previous mean of image x_t-1 and add variance depending on eta |
| 89 | + # eta corresponds to η in paper and should be between [0, 1] |
| 90 | + # do x_t -> x_t-1 |
| 91 | + image = self.scheduler.step(model_output, t, image).prev_sample |
| 92 | + |
| 93 | + image = (image / 2 + 0.5).clamp(0, 1) |
| 94 | + image = image.cpu().permute(0, 2, 3, 1).numpy() |
| 95 | + if output_type == "pil": |
| 96 | + image = self.numpy_to_pil(image) |
| 97 | + |
| 98 | + if not return_dict: |
| 99 | + return (image,), "This is a local test" |
| 100 | + |
| 101 | + return ImagePipelineOutput(images=image), "This is a local test" |
0 commit comments