|
| 1 | +Collections: |
| 2 | +- Name: fastfcn |
| 3 | + Metadata: |
| 4 | + Training Data: |
| 5 | + - Cityscapes |
| 6 | + Paper: |
| 7 | + URL: https://arxiv.org/abs/1903.11816 |
| 8 | + Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation' |
| 9 | + README: configs/fastfcn/README.md |
| 10 | + Code: |
| 11 | + URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12 |
| 12 | + Version: v0.18.0 |
| 13 | + Converted From: |
| 14 | + Code: https://github.com/wuhuikai/FastFCN |
| 15 | +Models: |
| 16 | +- Name: fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes |
| 17 | + In Collection: fastfcn |
| 18 | + Metadata: |
| 19 | + backbone: R-50-D32 |
| 20 | + crop size: (512,1024) |
| 21 | + lr schd: 80000 |
| 22 | + inference time (ms/im): |
| 23 | + - value: 378.79 |
| 24 | + hardware: V100 |
| 25 | + backend: PyTorch |
| 26 | + batch size: 1 |
| 27 | + mode: FP32 |
| 28 | + resolution: (512,1024) |
| 29 | + memory (GB): 5.67 |
| 30 | + Results: |
| 31 | + - Task: Semantic Segmentation |
| 32 | + Dataset: Cityscapes |
| 33 | + Metrics: |
| 34 | + mIoU: 79.12 |
| 35 | + mIoU(ms+flip): 80.58 |
| 36 | + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes.py |
| 37 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth |
| 38 | +- Name: fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes |
| 39 | + In Collection: fastfcn |
| 40 | + Metadata: |
| 41 | + backbone: R-50-D32 |
| 42 | + crop size: (512,1024) |
| 43 | + lr schd: 80000 |
| 44 | + memory (GB): 9.79 |
| 45 | + Results: |
| 46 | + - Task: Semantic Segmentation |
| 47 | + Dataset: Cityscapes |
| 48 | + Metrics: |
| 49 | + mIoU: 79.52 |
| 50 | + mIoU(ms+flip): 80.91 |
| 51 | + Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes.py |
| 52 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth |
| 53 | +- Name: fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes |
| 54 | + In Collection: fastfcn |
| 55 | + Metadata: |
| 56 | + backbone: R-50-D32 |
| 57 | + crop size: (512,1024) |
| 58 | + lr schd: 80000 |
| 59 | + inference time (ms/im): |
| 60 | + - value: 227.27 |
| 61 | + hardware: V100 |
| 62 | + backend: PyTorch |
| 63 | + batch size: 1 |
| 64 | + mode: FP32 |
| 65 | + resolution: (512,1024) |
| 66 | + memory (GB): 5.67 |
| 67 | + Results: |
| 68 | + - Task: Semantic Segmentation |
| 69 | + Dataset: Cityscapes |
| 70 | + Metrics: |
| 71 | + mIoU: 79.26 |
| 72 | + mIoU(ms+flip): 80.86 |
| 73 | + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes.py |
| 74 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth |
| 75 | +- Name: fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes |
| 76 | + In Collection: fastfcn |
| 77 | + Metadata: |
| 78 | + backbone: R-50-D32 |
| 79 | + crop size: (512,1024) |
| 80 | + lr schd: 80000 |
| 81 | + memory (GB): 9.94 |
| 82 | + Results: |
| 83 | + - Task: Semantic Segmentation |
| 84 | + Dataset: Cityscapes |
| 85 | + Metrics: |
| 86 | + mIoU: 78.76 |
| 87 | + mIoU(ms+flip): 80.03 |
| 88 | + Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes.py |
| 89 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth |
| 90 | +- Name: fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes |
| 91 | + In Collection: fastfcn |
| 92 | + Metadata: |
| 93 | + backbone: R-50-D32 |
| 94 | + crop size: (512,1024) |
| 95 | + lr schd: 80000 |
| 96 | + inference time (ms/im): |
| 97 | + - value: 209.64 |
| 98 | + hardware: V100 |
| 99 | + backend: PyTorch |
| 100 | + batch size: 1 |
| 101 | + mode: FP32 |
| 102 | + resolution: (512,1024) |
| 103 | + memory (GB): 8.15 |
| 104 | + Results: |
| 105 | + - Task: Semantic Segmentation |
| 106 | + Dataset: Cityscapes |
| 107 | + Metrics: |
| 108 | + mIoU: 77.97 |
| 109 | + mIoU(ms+flip): 79.92 |
| 110 | + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes.py |
| 111 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth |
| 112 | +- Name: fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes |
| 113 | + In Collection: fastfcn |
| 114 | + Metadata: |
| 115 | + backbone: R-50-D32 |
| 116 | + crop size: (512,1024) |
| 117 | + lr schd: 80000 |
| 118 | + memory (GB): 15.45 |
| 119 | + Results: |
| 120 | + - Task: Semantic Segmentation |
| 121 | + Dataset: Cityscapes |
| 122 | + Metrics: |
| 123 | + mIoU: 78.6 |
| 124 | + mIoU(ms+flip): 80.25 |
| 125 | + Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes.py |
| 126 | + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth |
0 commit comments