@@ -27,7 +27,7 @@ Models:
2727 - Task : Semantic Segmentation
2828 Dataset : DRIVE
2929 Metrics :
30- mIoU : 78.67
30+ Dice : 78.67
3131 Config : configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py
3232 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
3333- Name : pspnet_unet_s5-d16_64x64_40k_drive
@@ -41,7 +41,7 @@ Models:
4141 - Task : Semantic Segmentation
4242 Dataset : DRIVE
4343 Metrics :
44- mIoU : 78.62
44+ Dice : 78.62
4545 Config : configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py
4646 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth
4747- Name : deeplabv3_unet_s5-d16_64x64_40k_drive
@@ -55,7 +55,7 @@ Models:
5555 - Task : Semantic Segmentation
5656 Dataset : DRIVE
5757 Metrics :
58- mIoU : 78.69
58+ Dice : 78.69
5959 Config : configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py
6060 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth
6161- Name : fcn_unet_s5-d16_128x128_40k_stare
@@ -69,7 +69,7 @@ Models:
6969 - Task : Semantic Segmentation
7070 Dataset : STARE
7171 Metrics :
72- mIoU : 81.02
72+ Dice : 81.02
7373 Config : configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
7474 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
7575- Name : pspnet_unet_s5-d16_128x128_40k_stare
@@ -83,7 +83,7 @@ Models:
8383 - Task : Semantic Segmentation
8484 Dataset : STARE
8585 Metrics :
86- mIoU : 81.22
86+ Dice : 81.22
8787 Config : configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py
8888 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth
8989- Name : deeplabv3_unet_s5-d16_128x128_40k_stare
@@ -97,7 +97,7 @@ Models:
9797 - Task : Semantic Segmentation
9898 Dataset : STARE
9999 Metrics :
100- mIoU : 80.93
100+ Dice : 80.93
101101 Config : configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py
102102 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth
103103- Name : fcn_unet_s5-d16_128x128_40k_chase_db1
@@ -111,7 +111,7 @@ Models:
111111 - Task : Semantic Segmentation
112112 Dataset : CHASE_DB1
113113 Metrics :
114- mIoU : 80.24
114+ Dice : 80.24
115115 Config : configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py
116116 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
117117- Name : pspnet_unet_s5-d16_128x128_40k_chase_db1
@@ -125,7 +125,7 @@ Models:
125125 - Task : Semantic Segmentation
126126 Dataset : CHASE_DB1
127127 Metrics :
128- mIoU : 80.36
128+ Dice : 80.36
129129 Config : configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py
130130 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth
131131- Name : deeplabv3_unet_s5-d16_128x128_40k_chase_db1
@@ -139,7 +139,7 @@ Models:
139139 - Task : Semantic Segmentation
140140 Dataset : CHASE_DB1
141141 Metrics :
142- mIoU : 80.47
142+ Dice : 80.47
143143 Config : configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py
144144 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth
145145- Name : fcn_unet_s5-d16_256x256_40k_hrf
@@ -153,7 +153,7 @@ Models:
153153 - Task : Semantic Segmentation
154154 Dataset : HRF
155155 Metrics :
156- mIoU : 79.45
156+ Dice : 79.45
157157 Config : configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py
158158 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
159159- Name : pspnet_unet_s5-d16_256x256_40k_hrf
@@ -167,7 +167,7 @@ Models:
167167 - Task : Semantic Segmentation
168168 Dataset : HRF
169169 Metrics :
170- mIoU : 80.07
170+ Dice : 80.07
171171 Config : configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py
172172 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth
173173- Name : deeplabv3_unet_s5-d16_256x256_40k_hrf
@@ -181,6 +181,6 @@ Models:
181181 - Task : Semantic Segmentation
182182 Dataset : HRF
183183 Metrics :
184- mIoU : 80.21
184+ Dice : 80.21
185185 Config : configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py
186186 Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth
0 commit comments