Skip to content

Commit ed4436e

Browse files
committed
bug fix
1 parent 300aa25 commit ed4436e

File tree

1 file changed

+94
-54
lines changed

1 file changed

+94
-54
lines changed

PathTracking/pure_pursuit/pure_pursuit.py

Lines changed: 94 additions & 54 deletions
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,8 @@
1414

1515
Kp = 1.0 # speed propotional gain
1616
Lf = 1.0 # look-ahead distance
17+
# animation = True
18+
animation = False
1719

1820

1921
def PIDControl(target, current):
@@ -29,16 +31,23 @@ def pure_pursuit_control(state, cx, cy, pind):
2931
if pind >= ind:
3032
ind = pind
3133

32-
tx = cx[ind]
33-
ty = cy[ind]
34+
# print(pind, ind)
35+
if ind < len(cx):
36+
tx = cx[ind]
37+
ty = cy[ind]
38+
else:
39+
tx = cx[-1]
40+
ty = cy[-1]
41+
ind = len(cx) - 1
3442

3543
alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw
3644

3745
if state.v < 0: # back
38-
if alpha > 0:
39-
alpha = math.pi - alpha
40-
else:
41-
alpha = math.pi + alpha
46+
alpha = math.pi - alpha
47+
# if alpha > 0:
48+
# alpha = math.pi - alpha
49+
# else:
50+
# alpha = math.pi + alpha
4251

4352
delta = math.atan2(2.0 * unicycle_model.L * math.sin(alpha) / Lf, 1.0)
4453

@@ -64,48 +73,56 @@ def calc_target_index(state, cx, cy):
6473
return ind
6574

6675

67-
def closed_loop_prediction(cx, cy, cyaw, speed_profile):
76+
def closed_loop_prediction(cx, cy, cyaw, speed_profile, goal):
6877

69-
T = 100.0 # max simulation time
78+
T = 500.0 # max simulation time
79+
goal_dis = 0.3
80+
stop_speed = 0.05
7081

7182
state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
7283

73-
lastIndex = len(cx) - 1
84+
# lastIndex = len(cx) - 1
7485
time = 0.0
7586
x = [state.x]
7687
y = [state.y]
7788
yaw = [state.yaw]
7889
v = [state.v]
7990
t = [0.0]
8091
target_ind = calc_target_index(state, cx, cy)
81-
# print(target_ind)
8292

83-
while T >= time and lastIndex > target_ind:
93+
while T >= time:
8494
di, target_ind = pure_pursuit_control(state, cx, cy, target_ind)
8595
ai = PIDControl(speed_profile[target_ind], state.v)
8696
state = unicycle_model.update(state, ai, di)
8797

88-
if abs(state.v) <= 0.05:
98+
if abs(state.v) <= stop_speed:
8999
target_ind += 1
90100

91101
time = time + unicycle_model.dt
92102

103+
# check goal
104+
dx = state.x - goal[0]
105+
dy = state.y - goal[1]
106+
if math.sqrt(dx ** 2 + dy ** 2) <= goal_dis:
107+
print("Goal")
108+
break
109+
93110
x.append(state.x)
94111
y.append(state.y)
95112
yaw.append(state.yaw)
96113
v.append(state.v)
97114
t.append(time)
98115

99-
plt.cla()
100-
plt.plot(cx, cy, "-r", label="course")
101-
plt.plot(x, y, "ob", label="trajectory")
102-
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
103-
plt.axis("equal")
104-
plt.grid(True)
105-
plt.title("speed:" + str(round(state.v, 2)) +
106-
"tind:" + str(target_ind))
107-
plt.pause(0.0001)
108-
# input()
116+
if target_ind % 20 == 0 and animation:
117+
plt.cla()
118+
plt.plot(cx, cy, "-r", label="course")
119+
plt.plot(x, y, "ob", label="trajectory")
120+
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
121+
plt.axis("equal")
122+
plt.grid(True)
123+
plt.title("speed:" + str(round(state.v, 2)) +
124+
"tind:" + str(target_ind))
125+
plt.pause(0.0001)
109126

110127
return t, x, y, yaw, v
111128

@@ -185,45 +202,31 @@ def calc_speed_profile(cx, cy, cyaw, target_speed, a):
185202
speed_profile[-i - 1] = tspeed
186203

187204
# flg, ax = plt.subplots(1)
188-
plt.plot(speed_profile, "-r")
189-
# plt.plot(cx, cy, "-r")
190-
plt.show()
205+
# plt.plot(speed_profile, "-r")
206+
# plt.show()
191207

192208
return speed_profile
193209

194210

195-
def main():
196-
import pandas as pd
197-
data = pd.read_csv("rrt_course.csv")
198-
cx = np.array(data["x"])
199-
cy = np.array(data["y"])
200-
cyaw = np.array(data["yaw"])
201-
202-
target_speed = 10.0 / 3.6
203-
a = 0.1
211+
def extend_path(cx, cy, cyaw):
204212

205-
speed_profile = calc_speed_profile(cx, cy, cyaw, target_speed, a)
213+
dl = 0.1
214+
dl_list = [dl] * (int(Lf / dl) + 0)
206215

207-
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, speed_profile)
216+
move_direction = math.atan2(cy[-1] - cy[-2], cx[-1] - cx[-2])
217+
is_back = abs(move_direction - cyaw[-1]) >= math.pi / 2.0
208218

209-
flg, ax = plt.subplots(1)
210-
plt.plot(cx, cy, ".r", label="course")
211-
plt.plot(x, y, "-b", label="trajectory")
212-
plt.legend()
213-
plt.xlabel("x[m]")
214-
plt.ylabel("y[m]")
215-
plt.axis("equal")
216-
plt.grid(True)
219+
for idl in dl_list:
220+
if is_back:
221+
idl *= -1
222+
cx = np.append(cx, cx[-1] + idl * math.cos(cyaw[-1]))
223+
cy = np.append(cy, cy[-1] + idl * math.sin(cyaw[-1]))
224+
cyaw = np.append(cyaw, cyaw[-1])
217225

218-
flg, ax = plt.subplots(1)
219-
plt.plot(t, [iv * 3.6 for iv in v], "-r")
220-
plt.xlabel("Time[s]")
221-
plt.ylabel("Speed[km/h]")
222-
plt.grid(True)
223-
plt.show()
226+
return cx, cy, cyaw
224227

225228

226-
def main2():
229+
def main():
227230
# target course
228231
import numpy as np
229232
cx = np.arange(0, 50, 0.1)
@@ -233,8 +236,8 @@ def main2():
233236

234237
T = 15.0 # max simulation time
235238

236-
# state = unicycle_model.State(x=-0.0, y=-0.0, yaw=0.0, v=0.0)
237-
state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=-30.0 / 3.6)
239+
state = unicycle_model.State(x=-0.0, y=-3.0, yaw=0.0, v=0.0)
240+
# state = unicycle_model.State(x=-1.0, y=-5.0, yaw=0.0, v=-30.0 / 3.6)
238241
# state = unicycle_model.State(x=10.0, y=5.0, yaw=0.0, v=-30.0 / 3.6)
239242
# state = unicycle_model.State(
240243
# x=3.0, y=5.0, yaw=math.radians(-40.0), v=-10.0 / 3.6)
@@ -289,6 +292,43 @@ def main2():
289292
plt.show()
290293

291294

295+
def main2():
296+
import pandas as pd
297+
data = pd.read_csv("rrt_course.csv")
298+
cx = np.array(data["x"])
299+
cy = np.array(data["y"])
300+
cyaw = np.array(data["yaw"])
301+
302+
target_speed = 10.0 / 3.6
303+
a = 0.1
304+
305+
goal = [cx[-1], cy[-1]]
306+
307+
cx, cy, cyaw = extend_path(cx, cy, cyaw)
308+
309+
speed_profile = calc_speed_profile(cx, cy, cyaw, target_speed, a)
310+
311+
t, x, y, yaw, v = closed_loop_prediction(cx, cy, cyaw, speed_profile, goal)
312+
313+
flg, ax = plt.subplots(1)
314+
plt.plot(cx, cy, ".r", label="course")
315+
plt.plot(x, y, "-b", label="trajectory")
316+
plt.plot(goal[0], goal[1], "xg", label="goal")
317+
plt.legend()
318+
plt.xlabel("x[m]")
319+
plt.ylabel("y[m]")
320+
plt.axis("equal")
321+
plt.grid(True)
322+
323+
flg, ax = plt.subplots(1)
324+
plt.plot(t, [iv * 3.6 for iv in v], "-r")
325+
plt.xlabel("Time[s]")
326+
plt.ylabel("Speed[km/h]")
327+
plt.grid(True)
328+
plt.show()
329+
330+
292331
if __name__ == '__main__':
293332
print("Pure pursuit path tracking simulation start")
294-
main()
333+
# main()
334+
main2()

0 commit comments

Comments
 (0)