Skip to content

smhatefi/GhostNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GhostNet

GhostNet implementation from scratch for classifying images from the Oxford-IIIT Pet Dataset

Project Structure

  • ghostnet.py: Contains the model.
  • train.py: Script for training the model.
  • evaluate.py: Script for evaluating the model.
  • ghostnet_pet_model.pth: Pre-trained weights provided for your convenience.

Usage

1. Training the Model

To train the model, run:

python train.py

2. Evaluating the Model

First specify the location of your desired image in img_path variable in evaluate.py

Then run the evaluate.py script to make predictions using the trained model:

python evaluate.py

Dataset

The dataset used for training is the Oxford-IIIT Pet Dataset.

Oxford-IIIT Pet Dataset Statistics

License

This project is licensed under the MIT License. See the LICENSE file for details.

Acknowledgments

About

PyTorch implementation of GhostNet

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages