@@ -969,16 +969,16 @@ class LogisticRegression(BaseEstimator, LinearClassifierMixin,
969969
970970 Parameters
971971 ----------
972- penalty : str, 'l1' or 'l2'
972+ penalty : str, 'l1' or 'l2', default: 'l2'
973973 Used to specify the norm used in the penalization. The newton-cg, sag
974974 and lbfgs solvers support only l2 penalties.
975975
976- dual : bool
976+ dual : bool, default: False
977977 Dual or primal formulation. Dual formulation is only implemented for
978978 l2 penalty with liblinear solver. Prefer dual=False when
979979 n_samples > n_features.
980980
981- C : float, optional ( default= 1.0)
981+ C : float, default: 1.0
982982 Inverse of regularization strength; must be a positive float.
983983 Like in support vector machines, smaller values specify stronger
984984 regularization.
@@ -999,7 +999,7 @@ class LogisticRegression(BaseEstimator, LinearClassifierMixin,
999999 To lessen the effect of regularization on synthetic feature weight
10001000 (and therefore on the intercept) intercept_scaling has to be increased.
10011001
1002- class_weight : dict or 'balanced', optional
1002+ class_weight : dict or 'balanced', default: None
10031003 Weights associated with classes in the form ``{class_label: weight}``.
10041004 If not given, all classes are supposed to have weight one.
10051005
@@ -1014,15 +1014,15 @@ class LogisticRegression(BaseEstimator, LinearClassifierMixin,
10141014 *class_weight='balanced'* instead of deprecated
10151015 *class_weight='auto'*.
10161016
1017- max_iter : int
1017+ max_iter : int, default: 100
10181018 Useful only for the newton-cg, sag and lbfgs solvers.
10191019 Maximum number of iterations taken for the solvers to converge.
10201020
1021- random_state : int seed, RandomState instance, or None (default)
1021+ random_state : int seed, RandomState instance, default: None
10221022 The seed of the pseudo random number generator to use when
10231023 shuffling the data. Used only in solvers 'sag' and 'liblinear'.
10241024
1025- solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'}
1025+ solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'}, default: 'liblinear'
10261026 Algorithm to use in the optimization problem.
10271027
10281028 - For small datasets, 'liblinear' is a good choice, whereas 'sag' is
@@ -1039,29 +1039,29 @@ class LogisticRegression(BaseEstimator, LinearClassifierMixin,
10391039 .. versionadded:: 0.17
10401040 Stochastic Average Gradient descent solver.
10411041
1042- tol : float, optional
1042+ tol : float, default: 1e-4
10431043 Tolerance for stopping criteria.
10441044
1045- multi_class : str, {'ovr', 'multinomial'}
1045+ multi_class : str, {'ovr', 'multinomial'}, default: 'ovr'
10461046 Multiclass option can be either 'ovr' or 'multinomial'. If the option
10471047 chosen is 'ovr', then a binary problem is fit for each label. Else
10481048 the loss minimised is the multinomial loss fit across
10491049 the entire probability distribution. Works only for the 'newton-cg',
10501050 'sag' and 'lbfgs' solver.
10511051
1052- verbose : int
1052+ verbose : int, default: 0
10531053 For the liblinear and lbfgs solvers set verbose to any positive
10541054 number for verbosity.
10551055
1056- warm_start : bool, optional
1056+ warm_start : bool, default: False
10571057 When set to True, reuse the solution of the previous call to fit as
10581058 initialization, otherwise, just erase the previous solution.
10591059 Useless for liblinear solver.
10601060
10611061 .. versionadded:: 0.17
10621062 *warm_start* to support *lbfgs*, *newton-cg*, *sag* solvers.
10631063
1064- n_jobs : int, optional
1064+ n_jobs : int, default: 1
10651065 Number of CPU cores used during the cross-validation loop. If given
10661066 a value of -1, all cores are used.
10671067
0 commit comments