@@ -7,25 +7,25 @@ Shortly afterwards, the code will be reviewed and reorganized for convenience.
77- Fewness of Training Time
88- Better Reproduced Performance
99
10- ### Requirements
10+ ### Requirements && Install
11+ Python 3.7
1112
12- To install PyTorch>=0.4.0, please refer to https://github.com/pytorch/pytorch#installation .
13+ 4 x 12g GPUs (e.g. TITAN XP)
1314
14- 4 x 12g GPUs (e.g. TITAN XP)
15-
16- Python 3.6
15+ ``` bash
16+ # Install **Pytorch-1.1**
17+ $ conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
1718
18- ### Compiling
19+ # Install **Apex**
20+ $ git clone https://github.com/NVIDIA/apex
21+ $ cd apex
22+ $ pip install -v --no-cache-dir --global-option=" --cpp_ext" --global-option=" --cuda_ext" ./
1923
20- Some parts of InPlace-ABN have a native CUDA implementation, which must be compiled with the following commands:
21- ``` bash
22- cd libs
23- sh build.sh
24- python build.py
25- ```
26- The ` build.sh ` script assumes that the ` nvcc ` compiler is available in the current system search path.
27- The CUDA kernels are compiled for ` sm_50 ` , ` sm_52 ` and ` sm_61 ` by default.
28- To change this (_ e.g._ if you are using a Kepler GPU), please edit the ` CUDA_GENCODE ` variable in ` build.sh ` .
24+ # Install **Inplace-ABN**
25+ $ git clone https://github.com/mapillary/inplace_abn.git
26+ $ cd inplace_abn
27+ $ python setup.py install
28+ ```
2929
3030### Dataset and pretrained model
3131
@@ -35,7 +35,7 @@ Please download MIT imagenet pretrained [resnet101-imagenet.pth](http://scenepar
3535
3636### Training and Evaluation
3737``` bash
38- ./run_local.sh YOUR_CS_PATH
38+ ./run_local.sh YOUR_CS_PATH [pspnet | deeplabv3] 40000 769,769 0
3939```
4040
4141### Benefits
0 commit comments