|
1 | | -# The code for this repository is under development :construction_worker: |
| 1 | +# The code for this repository is under development :construction_worker: |
| 2 | + |
| 3 | +# How to run this code |
| 4 | +The code in this repository is quite compute heavy and best run on a GPU enabled machine. The datascience platform [Kaggle](http://kaggle.com/) offers free GPU recourses together with free online Jupyter notebooks. To make edits on the Kaggle notebooks, click 'Fork' to create a new copy of the notebook. You will need a Kaggle account for this. |
| 5 | + |
| 6 | +Alternatively you can just view the notebooks on [NB Viewer](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/tree/master/) or download the code and run it locally. |
| 7 | + |
| 8 | +## Chapter 1 - A neural Network from Scratch |
| 9 | +A neural network from Scratch & Intro to Keras: [Run on Kaggle](https://www.kaggle.com/jannesklaas/machine-learning-for-finance-chapter-1-code), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/1%20A%20neural%20network%20from%20scratch%20%26%20Intro%20to%20Keras.ipynb) |
| 10 | + |
| 11 | +Excercise excel sheet: [Download](https://github.com/PacktPublishing/Machine-Learning-for-Finance/blob/master/1%20Excel%20Exercise.xlsx) |
| 12 | + |
| 13 | +## Chapter 2 - Structured Data |
| 14 | + |
| 15 | +Credit card fraud detection: [Run On Kaggle](https://www.kaggle.com/jannesklaas/structured-data-code), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/2%20structured%20data.ipynb) |
| 16 | + |
| 17 | +## Chapter 3 - Computer Vision |
| 18 | +Classifying MNIST digits: [Run On Kaggle](https://www.kaggle.com/jannesklaas/classifying-mnist-digits), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/3.1%20MNIST.ipynb) |
| 19 | + |
| 20 | +Classifying Plants: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/3.2%20Plant%20Classification.ipynb) |
| 21 | + |
| 22 | +## Chapter 4 - Time Series |
| 23 | +Forecasting Web Traffic: Classic Methods: [Run On Kaggle](https://www.kaggle.com/jannesklaas/time-series-eda), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/4.1%20EDA%20%26%20Classic%20methods.ipynb) |
| 24 | + |
| 25 | +Forecasting Web Traffic: Time Series Neural Nets: [Run On Kaggle](https://www.kaggle.com/jannesklaas/nns-on-time-series), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/4.2%20NN%20on%20time%20series.ipynb) |
| 26 | + |
| 27 | +Expressing Uncertainty with Bayesian Deep Learning: [Run On Kaggle](https://www.kaggle.com/jannesklaas/bayesian), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/4.3%20Bayesian%20Deep%20Learning.ipynb) |
| 28 | + |
| 29 | +## Chapter 5 - Natural Language processing |
| 30 | +Analyzing the News: [Run On Kaggle](https://www.kaggle.com/jannesklaas/analyzing-the-news), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/5.1%20Analyzing%20the%20news.ipynb) |
| 31 | + |
| 32 | +Classifying Tweets: [Run On Kaggle](https://www.kaggle.com/jannesklaas/nlp-disasters), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/5.2%20Classifying%20Tweets.ipynb) |
| 33 | + |
| 34 | +Topic modeling with LDA: [Run On Kaggle](https://www.kaggle.com/jannesklaas/topic-modeling-with-lda), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/5.3%20Topic%20Modeling.ipynb) |
| 35 | + |
| 36 | +Sequence to Sequence models: [Run On Kaggle](https://www.kaggle.com/jannesklaas/a-simple-seq2seq-translator), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/5.4%20Translation.ipynb) |
| 37 | + |
| 38 | +## Chapter 6 - Generative Models |
| 39 | +(Variational) Autoencoder for MNIST: [Run On Kaggle](https://www.kaggle.com/jannesklaas/mnist-autoencoder-vae), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/6.1%20MNIST%20examples.ipynb) |
| 40 | + |
| 41 | +(Variational) Autoencoder for Fraud Detection: [Run On Kaggle](https://www.kaggle.com/jannesklaas/credit-vae), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/6.2%20Fraud%20examples.ipynb) |
| 42 | + |
| 43 | +Semi Supervised Generative Adversarial Network for Fraud Detection: [Run On Kaggle](https://www.kaggle.com/jannesklaas/semi-supervised-gan-for-fraud-detection), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/6.3%20SGAN.ipynb) |
| 44 | + |
| 45 | +## Chapter 7 - Reinforcement Learning |
| 46 | +Q-Learning: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/7.1%20Q-Learning.ipynb) |
| 47 | + |
| 48 | +A2C Pole Balancing: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/7.1%20Q-Learning.ipynb) |
| 49 | + |
| 50 | +A2C for Trading: [Run On Kaggle](https://www.kaggle.com/jannesklaas/a2c-stock-trading) [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/7.3%20A2C%20Trading.ipynb) |
| 51 | + |
| 52 | +## Chapter 8 - Debugging ML Systems |
| 53 | +Unit Testing Data: [Run On Kaggle](https://www.kaggle.com/jannesklaas/marbles-test), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.1%20Unit%20Testing%20Data.ipynb) |
| 54 | + |
| 55 | +Hyperparameter Optimization: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.2%20Hyperopt.ipynb) |
| 56 | + |
| 57 | +Learning Rate Search: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.4%20LR_Search.ipynb) |
| 58 | + |
| 59 | +Using Tensorboard: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.5%20Tensorboard.ipynb) |
| 60 | + |
| 61 | +Converting Keras Models to TF Estimators: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.6%20TF%20Estimator.ipynb) |
| 62 | + |
| 63 | +Faster Python with Cython: [Download Part 1](https://github.com/PacktPublishing/Machine-Learning-for-Finance/blob/master/cython_fib_8_7.pyx), [Download Part 2](https://github.com/PacktPublishing/Machine-Learning-for-Finance/blob/master/8_7_cython_setup.py) |
| 64 | + |
| 65 | +## Chapter 9 - Fighting Bias in Machine Learning |
| 66 | + |
| 67 | +Understanding Parity in Excel: [Download](https://github.com/PacktPublishing/Machine-Learning-for-Finance/blob/master/9.1_parity.xlsx) |
| 68 | + |
| 69 | +Learning How to Pivot: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/9.2_Learning_to_be_fair.ipynb) |
| 70 | + |
| 71 | +Interpretability with SHAP: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/9.3_SHAP.ipynb) |
0 commit comments