Skip to content

Commit 3f9634b

Browse files
committed
Added links to notebooks, some Kaggle links still missing (Kaggle is down)
1 parent aeae218 commit 3f9634b

File tree

1 file changed

+71
-1
lines changed

1 file changed

+71
-1
lines changed

README.md

Lines changed: 71 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1,71 @@
1-
# The code for this repository is under development :construction_worker:
1+
# The code for this repository is under development :construction_worker:
2+
3+
# How to run this code
4+
The code in this repository is quite compute heavy and best run on a GPU enabled machine. The datascience platform [Kaggle](http://kaggle.com/) offers free GPU recourses together with free online Jupyter notebooks. To make edits on the Kaggle notebooks, click 'Fork' to create a new copy of the notebook. You will need a Kaggle account for this.
5+
6+
Alternatively you can just view the notebooks on [NB Viewer](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/tree/master/) or download the code and run it locally.
7+
8+
## Chapter 1 - A neural Network from Scratch
9+
A neural network from Scratch & Intro to Keras: [Run on Kaggle](https://www.kaggle.com/jannesklaas/machine-learning-for-finance-chapter-1-code), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/1%20A%20neural%20network%20from%20scratch%20%26%20Intro%20to%20Keras.ipynb)
10+
11+
Excercise excel sheet: [Download](https://github.com/PacktPublishing/Machine-Learning-for-Finance/blob/master/1%20Excel%20Exercise.xlsx)
12+
13+
## Chapter 2 - Structured Data
14+
15+
Credit card fraud detection: [Run On Kaggle](https://www.kaggle.com/jannesklaas/structured-data-code), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/2%20structured%20data.ipynb)
16+
17+
## Chapter 3 - Computer Vision
18+
Classifying MNIST digits: [Run On Kaggle](https://www.kaggle.com/jannesklaas/classifying-mnist-digits), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/3.1%20MNIST.ipynb)
19+
20+
Classifying Plants: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/3.2%20Plant%20Classification.ipynb)
21+
22+
## Chapter 4 - Time Series
23+
Forecasting Web Traffic: Classic Methods: [Run On Kaggle](https://www.kaggle.com/jannesklaas/time-series-eda), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/4.1%20EDA%20%26%20Classic%20methods.ipynb)
24+
25+
Forecasting Web Traffic: Time Series Neural Nets: [Run On Kaggle](https://www.kaggle.com/jannesklaas/nns-on-time-series), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/4.2%20NN%20on%20time%20series.ipynb)
26+
27+
Expressing Uncertainty with Bayesian Deep Learning: [Run On Kaggle](https://www.kaggle.com/jannesklaas/bayesian), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/4.3%20Bayesian%20Deep%20Learning.ipynb)
28+
29+
## Chapter 5 - Natural Language processing
30+
Analyzing the News: [Run On Kaggle](https://www.kaggle.com/jannesklaas/analyzing-the-news), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/5.1%20Analyzing%20the%20news.ipynb)
31+
32+
Classifying Tweets: [Run On Kaggle](https://www.kaggle.com/jannesklaas/nlp-disasters), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/5.2%20Classifying%20Tweets.ipynb)
33+
34+
Topic modeling with LDA: [Run On Kaggle](https://www.kaggle.com/jannesklaas/topic-modeling-with-lda), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/5.3%20Topic%20Modeling.ipynb)
35+
36+
Sequence to Sequence models: [Run On Kaggle](https://www.kaggle.com/jannesklaas/a-simple-seq2seq-translator), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/5.4%20Translation.ipynb)
37+
38+
## Chapter 6 - Generative Models
39+
(Variational) Autoencoder for MNIST: [Run On Kaggle](https://www.kaggle.com/jannesklaas/mnist-autoencoder-vae), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/6.1%20MNIST%20examples.ipynb)
40+
41+
(Variational) Autoencoder for Fraud Detection: [Run On Kaggle](https://www.kaggle.com/jannesklaas/credit-vae), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/6.2%20Fraud%20examples.ipynb)
42+
43+
Semi Supervised Generative Adversarial Network for Fraud Detection: [Run On Kaggle](https://www.kaggle.com/jannesklaas/semi-supervised-gan-for-fraud-detection), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/6.3%20SGAN.ipynb)
44+
45+
## Chapter 7 - Reinforcement Learning
46+
Q-Learning: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/7.1%20Q-Learning.ipynb)
47+
48+
A2C Pole Balancing: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/7.1%20Q-Learning.ipynb)
49+
50+
A2C for Trading: [Run On Kaggle](https://www.kaggle.com/jannesklaas/a2c-stock-trading) [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/7.3%20A2C%20Trading.ipynb)
51+
52+
## Chapter 8 - Debugging ML Systems
53+
Unit Testing Data: [Run On Kaggle](https://www.kaggle.com/jannesklaas/marbles-test), [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.1%20Unit%20Testing%20Data.ipynb)
54+
55+
Hyperparameter Optimization: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.2%20Hyperopt.ipynb)
56+
57+
Learning Rate Search: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.4%20LR_Search.ipynb)
58+
59+
Using Tensorboard: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.5%20Tensorboard.ipynb)
60+
61+
Converting Keras Models to TF Estimators: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/8.6%20TF%20Estimator.ipynb)
62+
63+
Faster Python with Cython: [Download Part 1](https://github.com/PacktPublishing/Machine-Learning-for-Finance/blob/master/cython_fib_8_7.pyx), [Download Part 2](https://github.com/PacktPublishing/Machine-Learning-for-Finance/blob/master/8_7_cython_setup.py)
64+
65+
## Chapter 9 - Fighting Bias in Machine Learning
66+
67+
Understanding Parity in Excel: [Download](https://github.com/PacktPublishing/Machine-Learning-for-Finance/blob/master/9.1_parity.xlsx)
68+
69+
Learning How to Pivot: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/9.2_Learning_to_be_fair.ipynb)
70+
71+
Interpretability with SHAP: [View Online](http://nbviewer.jupyter.org/github/PacktPublishing/Machine-Learning-for-Finance/blob/master/9.3_SHAP.ipynb)

0 commit comments

Comments
 (0)