Skip to content

Commit ac02ba4

Browse files
committed
Fix tensorflow deprecations
1 parent 856b787 commit ac02ba4

File tree

2 files changed

+16
-16
lines changed

2 files changed

+16
-16
lines changed

PolicyGradient/a3c/estimators.py

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -86,9 +86,9 @@ def __init__(self, num_outputs, reuse=False, trainable=True):
8686
self.losses = - (tf.log(self.picked_action_probs) * self.targets + 0.01 * self.entropy)
8787
self.loss = tf.reduce_sum(self.losses, name="loss")
8888

89-
tf.scalar_summary(self.loss.op.name, self.loss)
90-
tf.scalar_summary(self.entropy_mean.op.name, self.entropy_mean)
91-
tf.histogram_summary(self.entropy.op.name, self.entropy)
89+
tf.summary.scalar(self.loss.op.name, self.loss)
90+
tf.summary.scalar(self.entropy_mean.op.name, self.entropy_mean)
91+
tf.summary.histogram(self.entropy.op.name, self.entropy)
9292

9393
if trainable:
9494
# self.optimizer = tf.train.AdamOptimizer(1e-4)
@@ -103,7 +103,7 @@ def __init__(self, num_outputs, reuse=False, trainable=True):
103103
summary_ops = tf.get_collection(tf.GraphKeys.SUMMARIES)
104104
sumaries = [s for s in summary_ops if "policy_net" in s.name or "shared" in s.name]
105105
sumaries = [s for s in summary_ops if var_scope_name in s.name]
106-
self.summaries = tf.merge_summary(sumaries)
106+
self.summaries = tf.summary.merge(sumaries)
107107

108108

109109
class ValueEstimator():
@@ -146,15 +146,15 @@ def __init__(self, reuse=False, trainable=True):
146146

147147
# Summaries
148148
prefix = tf.get_variable_scope().name
149-
tf.scalar_summary(self.loss.name, self.loss)
150-
tf.scalar_summary("{}/max_value".format(prefix), tf.reduce_max(self.logits))
151-
tf.scalar_summary("{}/min_value".format(prefix), tf.reduce_min(self.logits))
152-
tf.scalar_summary("{}/mean_value".format(prefix), tf.reduce_mean(self.logits))
153-
tf.scalar_summary("{}/reward_max".format(prefix), tf.reduce_max(self.targets))
154-
tf.scalar_summary("{}/reward_min".format(prefix), tf.reduce_min(self.targets))
155-
tf.scalar_summary("{}/reward_mean".format(prefix), tf.reduce_mean(self.targets))
156-
tf.histogram_summary("{}/reward_targets".format(prefix), self.targets)
157-
tf.histogram_summary("{}/values".format(prefix), self.logits)
149+
tf.summary.scalar(self.loss.name, self.loss)
150+
tf.summary.scalar("{}/max_value".format(prefix), tf.reduce_max(self.logits))
151+
tf.summary.scalar("{}/min_value".format(prefix), tf.reduce_min(self.logits))
152+
tf.summary.scalar("{}/mean_value".format(prefix), tf.reduce_mean(self.logits))
153+
tf.summary.scalar("{}/reward_max".format(prefix), tf.reduce_max(self.targets))
154+
tf.summary.scalar("{}/reward_min".format(prefix), tf.reduce_min(self.targets))
155+
tf.summary.scalar("{}/reward_mean".format(prefix), tf.reduce_mean(self.targets))
156+
tf.summary.histogram("{}/reward_targets".format(prefix), self.targets)
157+
tf.summary.histogram("{}/values".format(prefix), self.logits)
158158

159159
if trainable:
160160
# self.optimizer = tf.train.AdamOptimizer(1e-4)
@@ -168,4 +168,4 @@ def __init__(self, reuse=False, trainable=True):
168168
summary_ops = tf.get_collection(tf.GraphKeys.SUMMARIES)
169169
sumaries = [s for s in summary_ops if "policy_net" in s.name or "shared" in s.name]
170170
sumaries = [s for s in summary_ops if var_scope_name in s.name]
171-
self.summaries = tf.merge_summary(sumaries)
171+
self.summaries = tf.summary.merge(sumaries)

PolicyGradient/a3c/train.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ def make_env(wrap=True):
6464
if not os.path.exists(CHECKPOINT_DIR):
6565
os.makedirs(CHECKPOINT_DIR)
6666

67-
summary_writer = tf.train.SummaryWriter(os.path.join(MODEL_DIR, "train"))
67+
summary_writer = tf.summary.FileWriter(os.path.join(MODEL_DIR, "train"))
6868

6969
with tf.device("/cpu:0"):
7070

@@ -111,7 +111,7 @@ def make_env(wrap=True):
111111
saver=saver)
112112

113113
with tf.Session() as sess:
114-
sess.run(tf.initialize_all_variables())
114+
sess.run(tf.global_variables_initializer())
115115
coord = tf.train.Coordinator()
116116

117117
# Load a previous checkpoint if it exists

0 commit comments

Comments
 (0)