@@ -66,7 +66,7 @@ If you find this book useful in your research work, please consider citing:
6666
6767--------------------------------------
6868# Table of Content
69- ## 1. [ Introducion to Machine Learning] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 01%20-%20Introduction.pdf)
69+ ## 1. [ Introducion to Machine Learning] ( 01%20-%20Introduction.pdf )
7070#### 1.1 What is Machine Learning?
7171
7272- [x] 1.1.1. The Basic Concept
@@ -81,7 +81,7 @@ If you find this book useful in your research work, please consider citing:
8181
8282- [x] 1.2.3. Probability
8383
84- ## 2. [ Machine Learning Algorithms] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 02%20-%20Machine%20Learning.pdf)
84+ ## 2. [ Machine Learning Algorithms] ( 02%20-%20Machine%20Learning.pdf )
8585#### 2.1. Supervised Learning Algorithms
8686- [x] 2.1.1. Support Vector Machines (SVM)
8787
@@ -123,7 +123,7 @@ If you find this book useful in your research work, please consider citing:
123123- [x] 2.4.3. Boosting
124124
125125
126- ## 3. [ Linear Neural Networks (Regression problems)] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 03%20-%20Regression.pdf)
126+ ## 3. [ Linear Neural Networks (Regression problems)] ( 03%20-%20Regression.pdf )
127127
128128#### 3.1. Linear Regression
129129- [x] 3.1.1. The Basic Concept
@@ -147,7 +147,7 @@ If you find this book useful in your research work, please consider citing:
147147
148148
149149
150- ## 4. [ Deep Neural Networks] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 04%20-%20DNN.pdf)
150+ ## 4. [ Deep Neural Networks] ( 04%20-%20DNN.pdf )
151151#### 4.1. MLP – Multilayer Perceptrons
152152
153153- [x] 4.1.1. From a Single Neuron to Deep Neural Network
@@ -183,7 +183,7 @@ If you find this book useful in your research work, please consider citing:
183183
184184
185185
186- ## 5. [ Convolutional Neural Networks] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 05%20-%20CNN.pdf)
186+ ## 5. [ Convolutional Neural Networks] ( 05%20-%20CNN.pdf )
187187
188188#### 5.1. Convolutional Layers
189189- [x] 5.1.1. From Fully-Connected Layers to Convolutions
@@ -212,7 +212,7 @@ If you find this book useful in your research work, please consider citing:
212212
213213
214214
215- ## 6. [ Recurrent Neural Networks] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 06%20-%20RNN.pdf)
215+ ## 6. [ Recurrent Neural Networks] ( 06%20-%20RNN.pdf )
216216
217217 #### 6.1. Sequence Models
218218- [x] 6.1.1. Recurrent Neural Networks
@@ -231,7 +231,7 @@ If you find this book useful in your research work, please consider citing:
231231- [ ] 6.2.5. Sequence to Sequence Learning
232232
233233
234- ## 7. [ Deep Generative Models] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 07%20-%20Deep%20Generative%20Models.pdf)
234+ ## 7. [ Deep Generative Models] ( 07%20-%20Deep%20Generative%20Models.pdf )
235235#### 7.1. Variational AutoEncoder (VAE)
236236- [x] 7.1.1. Dimensionality Reduction
237237
@@ -268,7 +268,7 @@ If you find this book useful in your research work, please consider citing:
268268- [x] 7.3.4. PixelCNN++
269269
270270
271- ## 8. [ Attention Mechanism] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 08%20-%20Attention.pdf)
271+ ## 8. [ Attention Mechanism] ( 08%20-%20Attention.pdf )
272272#### 8.1. Sequence to Sequence Learning and Attention
273273
274274- [x] 8.1.1. Attention in Seq2Seq Models
@@ -288,7 +288,7 @@ If you find this book useful in your research work, please consider citing:
288288- [x] 8.2.5. Transformer Applications
289289
290290
291- ## 9. [ Computer Vision] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 09%20-%20computer%20vision .pdf)
291+ ## 9. [ Computer Vision] ( 09%20-%20Computer%20Vision .pdf )
292292#### 9.1. Object Detection
293293
294294- [x] 9.1.1. Introduction to Object Detection
@@ -343,15 +343,15 @@ If you find this book useful in your research work, please consider citing:
343343- [ ] 9.5.5. Zero-Shot Learning
344344
345345
346- ## 10. [ Natural Language Process] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 10%20-%20Natural%20Language%20Processing.pdf)
346+ ## 10. [ Natural Language Process] ( 10%20-%20Natural%20Language%20Processing.pdf )
347347#### 10.1. Language Models and Word Representation
348348- [x] 10.1.1. Basic Language Models
349349
350350- [x] 10.1.2. Word Representation (Vectors) and Word Embeddings
351351
352352- [x] 10.1.3. COntextual Embeddings
353353
354- ## 11. [ Reinforcement Learning] ( https://github.com/AvrahamRaviv/Deep-Learning-in-Hebrew/blob/main/ 11%20-%20Reinforecment%20Learning.pdf)
354+ ## 11. [ Reinforcement Learning] ( 11%20-%20Reinforecment%20Learning.pdf )
355355#### 11.1. Introduction to RL
356356- [x] 11.1.1. Markov Decision Process (MDP) and RL
357357
0 commit comments